连续部分商乘积在连续分数中的渐近行为

IF 0.6 4区 数学 Q3 MATHEMATICS
XIAO CHEN, LULU FANG, JUNJIE LI, LEI SHANG, XIN ZENG
{"title":"连续部分商乘积在连续分数中的渐近行为","authors":"XIAO CHEN, LULU FANG, JUNJIE LI, LEI SHANG, XIN ZENG","doi":"10.1017/s000497272400025x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$[a_1(x),a_2(x),a_3(x),\\ldots ]$</span></span></img></span></span> be the continued fraction expansion of an irrational number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$x\\in [0,1)$</span></span></img></span></span>. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of <span>x</span>. We prove that, for Lebesgue almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$x\\in [0,1)$</span></span></img></span></span>, <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\liminf_{n \\to \\infty} \\frac{\\log (a_n(x)a_{n+1}(x))}{\\log n} = 0\\quad \\text{and}\\quad \\limsup_{n \\to \\infty} \\frac{\\log (a_n(x)a_{n+1}(x))}{\\log n}=1. \\end{align*} $$</span></span></img></span></p><p>We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS\",\"authors\":\"XIAO CHEN, LULU FANG, JUNJIE LI, LEI SHANG, XIN ZENG\",\"doi\":\"10.1017/s000497272400025x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[a_1(x),a_2(x),a_3(x),\\\\ldots ]$</span></span></img></span></span> be the continued fraction expansion of an irrational number <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x\\\\in [0,1)$</span></span></img></span></span>. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of <span>x</span>. We prove that, for Lebesgue almost all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x\\\\in [0,1)$</span></span></img></span></span>, <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417094313995-0120:S000497272400025X:S000497272400025X_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} \\\\liminf_{n \\\\to \\\\infty} \\\\frac{\\\\log (a_n(x)a_{n+1}(x))}{\\\\log n} = 0\\\\quad \\\\text{and}\\\\quad \\\\limsup_{n \\\\to \\\\infty} \\\\frac{\\\\log (a_n(x)a_{n+1}(x))}{\\\\log n}=1. \\\\end{align*} $$</span></span></img></span></p><p>We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272400025x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400025x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $[a_1(x),a_2(x),a_3(x),\ldots ]$ 是无理数 $x\in [0,1)$ 的连续分数展开。我们关注的是 x 的连续部分商乘积的渐近行为。我们证明,对于 Lebesgue 几乎所有的 $x\in [0,1)$, $$ (begin{align*})。\liminf_{n\to\infty}\{log (a_n(x)a_{n+1}(x))}{log n} = 0(四边形){text{and}(四边形) \limsup_{n \to\infty}\frac{log (a_n(x)a_{n+1}(x))}{log n}=1.\end{align*}$$We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS

Let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of an irrational number $x\in [0,1)$. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $x\in [0,1)$, $$ \begin{align*} \liminf_{n \to \infty} \frac{\log (a_n(x)a_{n+1}(x))}{\log n} = 0\quad \text{and}\quad \limsup_{n \to \infty} \frac{\log (a_n(x)a_{n+1}(x))}{\log n}=1. \end{align*} $$

We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信