等距沉浸和摇旗呐喊

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Martin Bauer, Jakob Møller-Andersen, Stephen C. Preston
{"title":"等距沉浸和摇旗呐喊","authors":"Martin Bauer,&nbsp;Jakob Møller-Andersen,&nbsp;Stephen C. Preston","doi":"10.1007/s00205-024-01978-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we propose a novel geometric model to study the motion of a physical flag. In our approach, a flag is viewed as an isometric immersion from the square with values in <span>\\(\\mathbb {R}^3\\)</span> satisfying certain boundary conditions at the flag pole. Under additional regularity constraints we show that the space of all such flags carries the structure of an infinite dimensional manifold and can be viewed as a submanifold of the space of all immersions. In the second part of the article we equip the space of isometric immersions with its natural kinetic energy and derive the corresponding equations of motion. This approach can be viewed in a spirit similar to Arnold’s geometric picture for the motion of an incompressible fluid.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01978-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Isometric Immersions and the Waving of Flags\",\"authors\":\"Martin Bauer,&nbsp;Jakob Møller-Andersen,&nbsp;Stephen C. Preston\",\"doi\":\"10.1007/s00205-024-01978-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we propose a novel geometric model to study the motion of a physical flag. In our approach, a flag is viewed as an isometric immersion from the square with values in <span>\\\\(\\\\mathbb {R}^3\\\\)</span> satisfying certain boundary conditions at the flag pole. Under additional regularity constraints we show that the space of all such flags carries the structure of an infinite dimensional manifold and can be viewed as a submanifold of the space of all immersions. In the second part of the article we equip the space of isometric immersions with its natural kinetic energy and derive the corresponding equations of motion. This approach can be viewed in a spirit similar to Arnold’s geometric picture for the motion of an incompressible fluid.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-01978-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01978-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01978-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新颖的几何模型来研究物理旗帜的运动。在我们的方法中,旗帜被看作是来自正方形的等距浸入,其值在\(\mathbb {R}^3\) 满足旗杆处的某些边界条件。在额外的规则性约束下,我们证明了所有这些旗帜的空间都具有无限维流形的结构,并且可以被看作是所有浸入空间的子流形。在文章的第二部分,我们为等距沉浸空间配备了自然动能,并推导出相应的运动方程。这种方法的精神类似于阿诺德对不可压缩流体运动的几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Isometric Immersions and the Waving of Flags

Isometric Immersions and the Waving of Flags

In this article we propose a novel geometric model to study the motion of a physical flag. In our approach, a flag is viewed as an isometric immersion from the square with values in \(\mathbb {R}^3\) satisfying certain boundary conditions at the flag pole. Under additional regularity constraints we show that the space of all such flags carries the structure of an infinite dimensional manifold and can be viewed as a submanifold of the space of all immersions. In the second part of the article we equip the space of isometric immersions with its natural kinetic energy and derive the corresponding equations of motion. This approach can be viewed in a spirit similar to Arnold’s geometric picture for the motion of an incompressible fluid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信