菲茨休-纳古莫模型六十年:时空动态及其跨学科影响指南

Daniel Cebrían-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reynés, Lendert Gelens
{"title":"菲茨休-纳古莫模型六十年:时空动态及其跨学科影响指南","authors":"Daniel Cebrían-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reynés, Lendert Gelens","doi":"arxiv-2404.11403","DOIUrl":null,"url":null,"abstract":"The FitzHugh-Nagumo equation, originally conceived in neuroscience during the\n1960s, became a key model providing a simplified view of excitable neuron cell\nbehavior. Its applicability, however, extends beyond neuroscience into fields\nlike cardiac physiology, cell division, population dynamics, electronics, and\nother natural phenomena. In this review spanning six decades of research, we\ndiscuss the diverse spatio-temporal dynamical behaviors described by the\nFitzHugh-Nagumo equation. These include dynamics like bistability,\noscillations, and excitability, but it also addresses more complex phenomena\nsuch as traveling waves and extended patterns in coupled systems. The review\nserves as a guide for modelers aiming to utilize the strengths of the\nFitzHugh-Nagumo model to capture generic dynamical behavior. It not only\ncatalogs known dynamical states and bifurcations, but also extends previous\nstudies by providing stability and bifurcation analyses for coupled spatial\nsystems.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"439 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Six decades of the FitzHugh-Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines\",\"authors\":\"Daniel Cebrían-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reynés, Lendert Gelens\",\"doi\":\"arxiv-2404.11403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FitzHugh-Nagumo equation, originally conceived in neuroscience during the\\n1960s, became a key model providing a simplified view of excitable neuron cell\\nbehavior. Its applicability, however, extends beyond neuroscience into fields\\nlike cardiac physiology, cell division, population dynamics, electronics, and\\nother natural phenomena. In this review spanning six decades of research, we\\ndiscuss the diverse spatio-temporal dynamical behaviors described by the\\nFitzHugh-Nagumo equation. These include dynamics like bistability,\\noscillations, and excitability, but it also addresses more complex phenomena\\nsuch as traveling waves and extended patterns in coupled systems. The review\\nserves as a guide for modelers aiming to utilize the strengths of the\\nFitzHugh-Nagumo model to capture generic dynamical behavior. It not only\\ncatalogs known dynamical states and bifurcations, but also extends previous\\nstudies by providing stability and bifurcation analyses for coupled spatial\\nsystems.\",\"PeriodicalId\":501219,\"journal\":{\"name\":\"arXiv - QuanBio - Other Quantitative Biology\",\"volume\":\"439 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Other Quantitative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.11403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

菲茨休-纳古莫方程最初是 20 世纪 60 年代在神经科学领域提出的,后来成为简化兴奋神经元细胞行为的关键模型。然而,它的适用范围已超出神经科学,扩展到心脏生理学、细胞分裂、群体动力学、电子学和其他自然现象等领域。在这篇横跨六十年研究的综述中,我们讨论了菲茨休-纳古莫方程所描述的各种时空动力学行为。这些行为包括双稳态、振荡和兴奋性等动力学行为,但也涉及更复杂的现象,如耦合系统中的行波和扩展模式。对于希望利用菲茨休-纳古莫模型的优势来捕捉一般动力学行为的建模者来说,这本评论可作为指南。书中不仅列举了已知的动力学状态和分岔,还扩展了以前的研究,提供了耦合空间系统的稳定性和分岔分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Six decades of the FitzHugh-Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines
The FitzHugh-Nagumo equation, originally conceived in neuroscience during the 1960s, became a key model providing a simplified view of excitable neuron cell behavior. Its applicability, however, extends beyond neuroscience into fields like cardiac physiology, cell division, population dynamics, electronics, and other natural phenomena. In this review spanning six decades of research, we discuss the diverse spatio-temporal dynamical behaviors described by the FitzHugh-Nagumo equation. These include dynamics like bistability, oscillations, and excitability, but it also addresses more complex phenomena such as traveling waves and extended patterns in coupled systems. The review serves as a guide for modelers aiming to utilize the strengths of the FitzHugh-Nagumo model to capture generic dynamical behavior. It not only catalogs known dynamical states and bifurcations, but also extends previous studies by providing stability and bifurcation analyses for coupled spatial systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信