Jennifer Hack, Ralf F Ziesche, Matilda Fransson, Theo Suter, Lukas Helfen, Cyrille Couture, Nikolay Kardjilov, Alessandro Tengattini, Paul Shearing, Dan Brett
{"title":"通过操作中子断层扫描了解运行燃料电池中的水动力学:对不同流场设计的研究","authors":"Jennifer Hack, Ralf F Ziesche, Matilda Fransson, Theo Suter, Lukas Helfen, Cyrille Couture, Nikolay Kardjilov, Alessandro Tengattini, Paul Shearing, Dan Brett","doi":"10.1088/2515-7655/ad3984","DOIUrl":null,"url":null,"abstract":"Water management plays a key role in ensuring optimum polymer electrolyte fuel cell (PEFC) performance, and flow field design can influence the ability of a cell to balance maintaining hydration, whilst avoiding flooding and cell failure. This work deepens the understanding of water evolution in different PEFC flow channel designs, namely single serpentine (SS), double serpentine (DS) and parallel, using our novel high-speed neutron computed tomography method. We developed our previously-reported method by introducing continuous cell rotation, enabling 18 s per tomogram during 1 h holds at 300, 400 and 500 mA cm<sup>−2</sup>. The volume of water evolved in the cathode, membrane electrode assembly and anode was quantified, and key mechanisms for water droplet formation in the different flow channel designs were elucidated. The parallel flow field design had the poorest water management, with 47% of the cathode flow channel becoming filled after 1 h at 400 mA cm<sup>−2</sup>. This significant flooding blocked reactant sites and contributed to unstable cell performance and, ultimately, cell failure at higher current densities. The SS cell displayed the best water management, with only 11% of the cathode channel filled with water after 1 h at 500 mA cm<sup>−2</sup>, compared with 28% of the DS cathode channel. 3D visualisation and analysis of droplet behaviour elucidated how water ‘slugs’ in the SS were removed in the gas stream, whereas three of the four parallel cathode flow channels became entirely filled with water plugs, blocking gas flow and exacerbating cell flooding. The new insights gained here are expected to extend to novel flow field designs and image-based models, with the use of <italic toggle=\"yes\">operando</italic> neutron CT demonstrated as a powerful technique for both visualising and quantifying water management in operating PEFCs, as well as deepening the knowledge of droplet behaviour in different flow field types.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"39 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding water dynamics in operating fuel cells by operando neutron tomography: investigation of different flow field designs\",\"authors\":\"Jennifer Hack, Ralf F Ziesche, Matilda Fransson, Theo Suter, Lukas Helfen, Cyrille Couture, Nikolay Kardjilov, Alessandro Tengattini, Paul Shearing, Dan Brett\",\"doi\":\"10.1088/2515-7655/ad3984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water management plays a key role in ensuring optimum polymer electrolyte fuel cell (PEFC) performance, and flow field design can influence the ability of a cell to balance maintaining hydration, whilst avoiding flooding and cell failure. This work deepens the understanding of water evolution in different PEFC flow channel designs, namely single serpentine (SS), double serpentine (DS) and parallel, using our novel high-speed neutron computed tomography method. We developed our previously-reported method by introducing continuous cell rotation, enabling 18 s per tomogram during 1 h holds at 300, 400 and 500 mA cm<sup>−2</sup>. The volume of water evolved in the cathode, membrane electrode assembly and anode was quantified, and key mechanisms for water droplet formation in the different flow channel designs were elucidated. The parallel flow field design had the poorest water management, with 47% of the cathode flow channel becoming filled after 1 h at 400 mA cm<sup>−2</sup>. This significant flooding blocked reactant sites and contributed to unstable cell performance and, ultimately, cell failure at higher current densities. The SS cell displayed the best water management, with only 11% of the cathode channel filled with water after 1 h at 500 mA cm<sup>−2</sup>, compared with 28% of the DS cathode channel. 3D visualisation and analysis of droplet behaviour elucidated how water ‘slugs’ in the SS were removed in the gas stream, whereas three of the four parallel cathode flow channels became entirely filled with water plugs, blocking gas flow and exacerbating cell flooding. The new insights gained here are expected to extend to novel flow field designs and image-based models, with the use of <italic toggle=\\\"yes\\\">operando</italic> neutron CT demonstrated as a powerful technique for both visualising and quantifying water management in operating PEFCs, as well as deepening the knowledge of droplet behaviour in different flow field types.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad3984\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad3984","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Understanding water dynamics in operating fuel cells by operando neutron tomography: investigation of different flow field designs
Water management plays a key role in ensuring optimum polymer electrolyte fuel cell (PEFC) performance, and flow field design can influence the ability of a cell to balance maintaining hydration, whilst avoiding flooding and cell failure. This work deepens the understanding of water evolution in different PEFC flow channel designs, namely single serpentine (SS), double serpentine (DS) and parallel, using our novel high-speed neutron computed tomography method. We developed our previously-reported method by introducing continuous cell rotation, enabling 18 s per tomogram during 1 h holds at 300, 400 and 500 mA cm−2. The volume of water evolved in the cathode, membrane electrode assembly and anode was quantified, and key mechanisms for water droplet formation in the different flow channel designs were elucidated. The parallel flow field design had the poorest water management, with 47% of the cathode flow channel becoming filled after 1 h at 400 mA cm−2. This significant flooding blocked reactant sites and contributed to unstable cell performance and, ultimately, cell failure at higher current densities. The SS cell displayed the best water management, with only 11% of the cathode channel filled with water after 1 h at 500 mA cm−2, compared with 28% of the DS cathode channel. 3D visualisation and analysis of droplet behaviour elucidated how water ‘slugs’ in the SS were removed in the gas stream, whereas three of the four parallel cathode flow channels became entirely filled with water plugs, blocking gas flow and exacerbating cell flooding. The new insights gained here are expected to extend to novel flow field designs and image-based models, with the use of operando neutron CT demonstrated as a powerful technique for both visualising and quantifying water management in operating PEFCs, as well as deepening the knowledge of droplet behaviour in different flow field types.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.