{"title":"用于奥恩斯坦-乌伦贝克过程参数估计的传统方法与深度学习方法比较","authors":"Jacob Fein-Ashley","doi":"arxiv-2404.11526","DOIUrl":null,"url":null,"abstract":"We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely\nused in finance, physics, and biology. Parameter estimation of the OU process\nis a challenging problem. Thus, we review traditional tracking methods and\ncompare them with novel applications of deep learning to estimate the\nparameters of the OU process. We use a multi-layer perceptron to estimate the\nparameters of the OU process and compare its performance with traditional\nparameter estimation methods, such as the Kalman filter and maximum likelihood\nestimation. We find that the multi-layer perceptron can accurately estimate the\nparameters of the OU process given a large dataset of observed trajectories;\nhowever, traditional parameter estimation methods may be more suitable for\nsmaller datasets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process\",\"authors\":\"Jacob Fein-Ashley\",\"doi\":\"arxiv-2404.11526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely\\nused in finance, physics, and biology. Parameter estimation of the OU process\\nis a challenging problem. Thus, we review traditional tracking methods and\\ncompare them with novel applications of deep learning to estimate the\\nparameters of the OU process. We use a multi-layer perceptron to estimate the\\nparameters of the OU process and compare its performance with traditional\\nparameter estimation methods, such as the Kalman filter and maximum likelihood\\nestimation. We find that the multi-layer perceptron can accurately estimate the\\nparameters of the OU process given a large dataset of observed trajectories;\\nhowever, traditional parameter estimation methods may be more suitable for\\nsmaller datasets.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.11526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是奥恩斯坦-乌伦贝克(OU)过程,这是一种广泛应用于金融、物理和生物学的随机过程。OU 过程的参数估计是一个具有挑战性的问题。因此,我们回顾了传统的跟踪方法,并将它们与深度学习在估计 OU 过程参数方面的新应用进行了比较。我们使用多层感知器来估计 OU 过程的参数,并将其性能与卡尔曼滤波和最大似然估计等传统参数估计方法进行比较。我们发现,在观测到大量轨迹数据集的情况下,多层感知器可以准确地估计OU过程的参数;然而,传统的参数估计方法可能更适用于较小的数据集。
A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process
We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely
used in finance, physics, and biology. Parameter estimation of the OU process
is a challenging problem. Thus, we review traditional tracking methods and
compare them with novel applications of deep learning to estimate the
parameters of the OU process. We use a multi-layer perceptron to estimate the
parameters of the OU process and compare its performance with traditional
parameter estimation methods, such as the Kalman filter and maximum likelihood
estimation. We find that the multi-layer perceptron can accurately estimate the
parameters of the OU process given a large dataset of observed trajectories;
however, traditional parameter estimation methods may be more suitable for
smaller datasets.