$\mathbb{P}^{1}$上族的分段和单圈

IF 2.4 1区 数学 Q1 MATHEMATICS
Alex Pieloch
{"title":"$\\mathbb{P}^{1}$上族的分段和单圈","authors":"Alex Pieloch","doi":"10.1007/s00039-024-00679-6","DOIUrl":null,"url":null,"abstract":"<p>We consider morphisms <span>\\(\\pi : X \\to \\mathbb{P}^{1}\\)</span> of smooth projective varieties over <span>\\(\\mathbb{C}\\)</span>. We show that if <i>π</i> has at most one singular fibre, then <i>X</i> is uniruled and <i>π</i> admits sections. We reach the same conclusions, but with genus zero multisections instead of sections, if <i>π</i> has at most two singular fibres, and the first Chern class of <i>X</i> is supported in a single fibre of <i>π</i>.</p><p>To achieve these result, we use action completed symplectic cohomology groups associated to compact subsets of convex symplectic domains. These groups are defined using Pardon’s virtual fundamental chains package for Hamiltonian Floer cohomology. In the above setting, we show that the vanishing of these groups implies the existence of unirulings and (multi)sections.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"100 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sections and Unirulings of Families over $\\\\mathbb{P}^{1}$\",\"authors\":\"Alex Pieloch\",\"doi\":\"10.1007/s00039-024-00679-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider morphisms <span>\\\\(\\\\pi : X \\\\to \\\\mathbb{P}^{1}\\\\)</span> of smooth projective varieties over <span>\\\\(\\\\mathbb{C}\\\\)</span>. We show that if <i>π</i> has at most one singular fibre, then <i>X</i> is uniruled and <i>π</i> admits sections. We reach the same conclusions, but with genus zero multisections instead of sections, if <i>π</i> has at most two singular fibres, and the first Chern class of <i>X</i> is supported in a single fibre of <i>π</i>.</p><p>To achieve these result, we use action completed symplectic cohomology groups associated to compact subsets of convex symplectic domains. These groups are defined using Pardon’s virtual fundamental chains package for Hamiltonian Floer cohomology. In the above setting, we show that the vanishing of these groups implies the existence of unirulings and (multi)sections.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00679-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00679-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在\(\mathbb{C}\)上的光滑投影变体的态量\(\pi : X \to \mathbb{P}^{1}\)。我们证明,如果 π 最多只具有一条奇异纤维,那么 X 是无iruled 的,并且 π 具有截面。如果π最多有两个奇异纤维,并且 X 的第一奇恩类被支持在π的单纤维中,我们也会得出同样的结论,但用零属多截面代替截面。为了得到这些结果,我们使用了与凸交映域的紧凑子集相关联的作用完成的交映同调群。这些群是用帕尔登的哈密顿浮子同调虚拟基本链软件包定义的。在上述背景下,我们证明了这些群的消失意味着单圈和(多)截面的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sections and Unirulings of Families over $\mathbb{P}^{1}$

Sections and Unirulings of Families over $\mathbb{P}^{1}$

We consider morphisms \(\pi : X \to \mathbb{P}^{1}\) of smooth projective varieties over \(\mathbb{C}\). We show that if π has at most one singular fibre, then X is uniruled and π admits sections. We reach the same conclusions, but with genus zero multisections instead of sections, if π has at most two singular fibres, and the first Chern class of X is supported in a single fibre of π.

To achieve these result, we use action completed symplectic cohomology groups associated to compact subsets of convex symplectic domains. These groups are defined using Pardon’s virtual fundamental chains package for Hamiltonian Floer cohomology. In the above setting, we show that the vanishing of these groups implies the existence of unirulings and (multi)sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信