Yaqi Chen , Hao Zhang , Xukui Yang , Wenlin Zhang , Dan Qu
{"title":"通过基于任务的元多损失改进跨语言低资源语音识别","authors":"Yaqi Chen , Hao Zhang , Xukui Yang , Wenlin Zhang , Dan Qu","doi":"10.1016/j.csl.2024.101648","DOIUrl":null,"url":null,"abstract":"<div><p>Multilingual meta learning has emerged as a promising paradigm for transferring knowledge from source languages to facilitate the learning of low-resource target languages. Loss functions are a type of meta-knowledge that is crucial to the effective training of neural networks. However, the misalignment between the loss functions and the learning paradigms of meta learning degrades the network’s performance. To address this challenge, we propose a new method called Task-based Meta PolyLoss (TMPL) for meta learning. By regarding speech recognition tasks as normal samples and applying PolyLoss to the meta loss function, TMPL can be denoted as a linear combination of polynomial functions based on task query loss. Theoretical analysis shows that TMPL improves meta learning by enabling attention adjustment across different tasks, which can be tailored for different datasets. Experiments on three datasets demonstrated that gradient-based meta learning methods achieve superior performance with TMPL. Furthermore, our experiments validate that the task-based loss function effectively mitigates the misalignment issue.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"87 ","pages":"Article 101648"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving cross-lingual low-resource speech recognition by Task-based Meta PolyLoss\",\"authors\":\"Yaqi Chen , Hao Zhang , Xukui Yang , Wenlin Zhang , Dan Qu\",\"doi\":\"10.1016/j.csl.2024.101648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multilingual meta learning has emerged as a promising paradigm for transferring knowledge from source languages to facilitate the learning of low-resource target languages. Loss functions are a type of meta-knowledge that is crucial to the effective training of neural networks. However, the misalignment between the loss functions and the learning paradigms of meta learning degrades the network’s performance. To address this challenge, we propose a new method called Task-based Meta PolyLoss (TMPL) for meta learning. By regarding speech recognition tasks as normal samples and applying PolyLoss to the meta loss function, TMPL can be denoted as a linear combination of polynomial functions based on task query loss. Theoretical analysis shows that TMPL improves meta learning by enabling attention adjustment across different tasks, which can be tailored for different datasets. Experiments on three datasets demonstrated that gradient-based meta learning methods achieve superior performance with TMPL. Furthermore, our experiments validate that the task-based loss function effectively mitigates the misalignment issue.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"87 \",\"pages\":\"Article 101648\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000317\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000317","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving cross-lingual low-resource speech recognition by Task-based Meta PolyLoss
Multilingual meta learning has emerged as a promising paradigm for transferring knowledge from source languages to facilitate the learning of low-resource target languages. Loss functions are a type of meta-knowledge that is crucial to the effective training of neural networks. However, the misalignment between the loss functions and the learning paradigms of meta learning degrades the network’s performance. To address this challenge, we propose a new method called Task-based Meta PolyLoss (TMPL) for meta learning. By regarding speech recognition tasks as normal samples and applying PolyLoss to the meta loss function, TMPL can be denoted as a linear combination of polynomial functions based on task query loss. Theoretical analysis shows that TMPL improves meta learning by enabling attention adjustment across different tasks, which can be tailored for different datasets. Experiments on three datasets demonstrated that gradient-based meta learning methods achieve superior performance with TMPL. Furthermore, our experiments validate that the task-based loss function effectively mitigates the misalignment issue.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.