利用保形预测提高光伏发电概率预测的可靠性

Yvet Renkema , Lennard Visser , Tarek AlSkaif
{"title":"利用保形预测提高光伏发电概率预测的可靠性","authors":"Yvet Renkema ,&nbsp;Lennard Visser ,&nbsp;Tarek AlSkaif","doi":"10.1016/j.seja.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing integration of renewable energy, particularly solar photovoltaic (PV) power, presents challenges for power system operation. Accurate forecasts of renewable energy are both financially beneficial for electricity suppliers and necessary for grid operators to optimize operation and avoid grid imbalances. This paper proposes a forecasting framework to implement conformal prediction (CP) on top of point prediction models, which predict the PV power on a day-ahead basis, to quantify the uncertainty of those predictions. Simple and multiple linear regression, along with random forest regression, are used to construct the point predictions based on weather forecasts. Several variants of CP, including weighted CP, CP with k-nearest neighbors (KNN), CP with Mondrian binning, and conformal predictive systems, are built to transform the point predictions into rigorous uncertainty intervals or cumulative distribution functions to enhance reliability. The framework’s performance is evaluated using large datasets of weather predictions and PV power output in the Netherlands. Results indicate that CP combined with KNN and/or Mondrian binning after a linear regressor outperforms the corresponding linear quantile regressor. CP with KNN and Mondrian binning after using random forest regression demonstrates the most accurate probabilistic PV power forecasts, improving the weighted interval score by 14% compared to multiple linear quantile regression.</p></div>","PeriodicalId":101174,"journal":{"name":"Solar Energy Advances","volume":"4 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667113124000093/pdfft?md5=e50bf24db2d7c7366a78de1ce2cf9e6d&pid=1-s2.0-S2667113124000093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing the reliability of probabilistic PV power forecasts using conformal prediction\",\"authors\":\"Yvet Renkema ,&nbsp;Lennard Visser ,&nbsp;Tarek AlSkaif\",\"doi\":\"10.1016/j.seja.2024.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing integration of renewable energy, particularly solar photovoltaic (PV) power, presents challenges for power system operation. Accurate forecasts of renewable energy are both financially beneficial for electricity suppliers and necessary for grid operators to optimize operation and avoid grid imbalances. This paper proposes a forecasting framework to implement conformal prediction (CP) on top of point prediction models, which predict the PV power on a day-ahead basis, to quantify the uncertainty of those predictions. Simple and multiple linear regression, along with random forest regression, are used to construct the point predictions based on weather forecasts. Several variants of CP, including weighted CP, CP with k-nearest neighbors (KNN), CP with Mondrian binning, and conformal predictive systems, are built to transform the point predictions into rigorous uncertainty intervals or cumulative distribution functions to enhance reliability. The framework’s performance is evaluated using large datasets of weather predictions and PV power output in the Netherlands. Results indicate that CP combined with KNN and/or Mondrian binning after a linear regressor outperforms the corresponding linear quantile regressor. CP with KNN and Mondrian binning after using random forest regression demonstrates the most accurate probabilistic PV power forecasts, improving the weighted interval score by 14% compared to multiple linear quantile regression.</p></div>\",\"PeriodicalId\":101174,\"journal\":{\"name\":\"Solar Energy Advances\",\"volume\":\"4 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667113124000093/pdfft?md5=e50bf24db2d7c7366a78de1ce2cf9e6d&pid=1-s2.0-S2667113124000093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667113124000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667113124000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源,尤其是太阳能光伏发电(PV)的日益集成给电力系统的运行带来了挑战。准确预测可再生能源既能为电力供应商带来经济利益,也是电网运营商优化运行和避免电网失衡的必要条件。本文提出了一个预测框架,在点预测模型的基础上实施保形预测 (CP),以量化这些预测的不确定性。简单和多元线性回归以及随机森林回归被用于构建基于天气预报的点预测。为了将点预测转化为严格的不确定性区间或累积分布函数以提高可靠性,建立了几种 CP 变体,包括加权 CP、带 k 近邻 (KNN) 的 CP、带蒙德里安分选的 CP 和保形预测系统。利用荷兰的天气预测和光伏发电输出的大型数据集对该框架的性能进行了评估。结果表明,在线性回归器之后结合 KNN 和/或蒙德里安分选的 CP 优于相应的线性量化回归器。在使用随机森林回归后,结合 KNN 和蒙德里安分选的 CP 展示了最准确的概率光伏功率预测,与多重线性量化回归相比,加权区间得分提高了 14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the reliability of probabilistic PV power forecasts using conformal prediction

The increasing integration of renewable energy, particularly solar photovoltaic (PV) power, presents challenges for power system operation. Accurate forecasts of renewable energy are both financially beneficial for electricity suppliers and necessary for grid operators to optimize operation and avoid grid imbalances. This paper proposes a forecasting framework to implement conformal prediction (CP) on top of point prediction models, which predict the PV power on a day-ahead basis, to quantify the uncertainty of those predictions. Simple and multiple linear regression, along with random forest regression, are used to construct the point predictions based on weather forecasts. Several variants of CP, including weighted CP, CP with k-nearest neighbors (KNN), CP with Mondrian binning, and conformal predictive systems, are built to transform the point predictions into rigorous uncertainty intervals or cumulative distribution functions to enhance reliability. The framework’s performance is evaluated using large datasets of weather predictions and PV power output in the Netherlands. Results indicate that CP combined with KNN and/or Mondrian binning after a linear regressor outperforms the corresponding linear quantile regressor. CP with KNN and Mondrian binning after using random forest regression demonstrates the most accurate probabilistic PV power forecasts, improving the weighted interval score by 14% compared to multiple linear quantile regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信