通过电催化技术在原位提供 H2O2,用于卤过氧化物酶启发的抗生物污垢的轮状聚氧化金属酸盐

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yumeng Bian, Runze Wang, Xinxin Xu, Jin Chen and Qiang Wang
{"title":"通过电催化技术在原位提供 H2O2,用于卤过氧化物酶启发的抗生物污垢的轮状聚氧化金属酸盐","authors":"Yumeng Bian, Runze Wang, Xinxin Xu, Jin Chen and Qiang Wang","doi":"10.1039/D4QI00482E","DOIUrl":null,"url":null,"abstract":"<p >Biofouling is the adherence of micro-organisms on submerged surfaces, which is a common phenomenon presenting a serious hazard to industry and public health. Nanozymes with haloperoxidase mimic activity are promising options to combat biofouling because HBrO generated by them can kill micro-organisms effectively. However, in haloperoxidase mimic nanozyme-involved antibiofouling, massive H<small><sub>2</sub></small>O<small><sub>2</sub></small> injection is a requisite, which causes secondary pollution. To achieve self-sufficient H<small><sub>2</sub></small>O<small><sub>2</sub></small> supply in antibiofouling, a wheel-like polyoxometalate (POM) compound, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong>, was synthesized. As an artificial nanozyme, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong> shows excellent haloperoxidase mimic activity. In the electrocatalytic oxygen reduction reaction (ORR), it shows typical two-electron character and H<small><sub>2</sub></small>O<small><sub>2</sub></small> production rate reaches 1394.5, 1245.5 and 1053 mM g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> at 0.1, 0.3 and 0.5 V (<em>vs.</em> RHE) in neutral electrolyte. With H<small><sub>2</sub></small>O<small><sub>2</sub></small> produced by electrocatalysis, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong> accelerates the conversion from Br<small><sup>−</sup></small> to HBrO and achieves “additional H<small><sub>2</sub></small>O<small><sub>2</sub></small> free” antibiofouling. For bifunctional <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong>, the structure–activity connection is clarified for haloperoxidase mimic activity and electrocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production property. More importantly, an environmentally friendly antibiofouling strategy is developed.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 10","pages":" 3047-3055"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wheel-like polyoxometalate for haloperoxidase-inspired antibiofouling with H2O2in situ provided by electrocatalysis†\",\"authors\":\"Yumeng Bian, Runze Wang, Xinxin Xu, Jin Chen and Qiang Wang\",\"doi\":\"10.1039/D4QI00482E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biofouling is the adherence of micro-organisms on submerged surfaces, which is a common phenomenon presenting a serious hazard to industry and public health. Nanozymes with haloperoxidase mimic activity are promising options to combat biofouling because HBrO generated by them can kill micro-organisms effectively. However, in haloperoxidase mimic nanozyme-involved antibiofouling, massive H<small><sub>2</sub></small>O<small><sub>2</sub></small> injection is a requisite, which causes secondary pollution. To achieve self-sufficient H<small><sub>2</sub></small>O<small><sub>2</sub></small> supply in antibiofouling, a wheel-like polyoxometalate (POM) compound, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong>, was synthesized. As an artificial nanozyme, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong> shows excellent haloperoxidase mimic activity. In the electrocatalytic oxygen reduction reaction (ORR), it shows typical two-electron character and H<small><sub>2</sub></small>O<small><sub>2</sub></small> production rate reaches 1394.5, 1245.5 and 1053 mM g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> at 0.1, 0.3 and 0.5 V (<em>vs.</em> RHE) in neutral electrolyte. With H<small><sub>2</sub></small>O<small><sub>2</sub></small> produced by electrocatalysis, <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong> accelerates the conversion from Br<small><sup>−</sup></small> to HBrO and achieves “additional H<small><sub>2</sub></small>O<small><sub>2</sub></small> free” antibiofouling. For bifunctional <strong>Ni<small><sub>16</sub></small>Mo<small><sub>16</sub></small>P<small><sub>24</sub></small></strong>, the structure–activity connection is clarified for haloperoxidase mimic activity and electrocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production property. More importantly, an environmentally friendly antibiofouling strategy is developed.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 10\",\"pages\":\" 3047-3055\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00482e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00482e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

生物污损是微生物附着在水下表面的一种常见现象,对工业和公众健康造成严重危害。具有卤过氧化物酶模拟活性的纳米酶是对抗生物污垢的有效选择,因为它们产生的 HBrO 能有效杀死微生物。但是,在卤过氧化物酶模拟纳米酶参与抗生物污损时,需要注入大量 H2O2,从而造成二次污染。为了在抗生物污染中实现 H2O2 的自给自足,人们合成了一种轮状聚氧化金属(POM)化合物--Ni16Mo16P24。作为一种人工纳米酶,Ni16Mo16P24 具有优异的卤过氧化物酶模拟活性。在电催化氧还原反应(ORR)中,它表现出典型的双电子特性,在中性电解质中,0.1、0.3 和 0.5 V(相对于 RHE)电压下的 H2O2 生成率分别达到 1394.5、1245.5 和 1053 mM-g-1-h-1。通过电催化产生的 H2O2,Ni16Mo16P24 加快了 Br- 向 HBrO 的转化,在抗生物污垢方面实现了 "额外的无 H2O2"。对于双功能的 Ni16Mo16P24,澄清了卤过氧化物酶模拟活性和电催化 H2O2 生成特性的结构-活性联系。更重要的是,该研究开发了一种环境友好型抗生物污染策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A wheel-like polyoxometalate for haloperoxidase-inspired antibiofouling with H2O2in situ provided by electrocatalysis†

A wheel-like polyoxometalate for haloperoxidase-inspired antibiofouling with H2O2in situ provided by electrocatalysis†

Biofouling is the adherence of micro-organisms on submerged surfaces, which is a common phenomenon presenting a serious hazard to industry and public health. Nanozymes with haloperoxidase mimic activity are promising options to combat biofouling because HBrO generated by them can kill micro-organisms effectively. However, in haloperoxidase mimic nanozyme-involved antibiofouling, massive H2O2 injection is a requisite, which causes secondary pollution. To achieve self-sufficient H2O2 supply in antibiofouling, a wheel-like polyoxometalate (POM) compound, Ni16Mo16P24, was synthesized. As an artificial nanozyme, Ni16Mo16P24 shows excellent haloperoxidase mimic activity. In the electrocatalytic oxygen reduction reaction (ORR), it shows typical two-electron character and H2O2 production rate reaches 1394.5, 1245.5 and 1053 mM g−1 h−1 at 0.1, 0.3 and 0.5 V (vs. RHE) in neutral electrolyte. With H2O2 produced by electrocatalysis, Ni16Mo16P24 accelerates the conversion from Br to HBrO and achieves “additional H2O2 free” antibiofouling. For bifunctional Ni16Mo16P24, the structure–activity connection is clarified for haloperoxidase mimic activity and electrocatalytic H2O2 production property. More importantly, an environmentally friendly antibiofouling strategy is developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信