{"title":"格伦鲍姆关于四临界平面图边缘密度问题的解答","authors":"Zdeněk Dvořák, Carl Feghali","doi":"10.1007/s00493-024-00100-8","DOIUrl":null,"url":null,"abstract":"<p>We show that <span>\\(\\limsup |E(G)|/|V(G)| = 2.5\\)</span> over all 4-critical planar graphs <i>G</i>, answering a question of Grünbaum from 1988.\n</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution to a Problem of Grünbaum on the Edge Density of 4-Critical Planar Graphs\",\"authors\":\"Zdeněk Dvořák, Carl Feghali\",\"doi\":\"10.1007/s00493-024-00100-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that <span>\\\\(\\\\limsup |E(G)|/|V(G)| = 2.5\\\\)</span> over all 4-critical planar graphs <i>G</i>, answering a question of Grünbaum from 1988.\\n</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00100-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00100-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.