Jiayi Shen, Lai Jiang, Kan Wang, Anqi Wang, Fei Chen, Paul J. Newcombe, Christopher A. Haiman, David V. Conti
{"title":"边际汇总统计的分层联合分析--第一部分:多人口精细映射和可信集构建","authors":"Jiayi Shen, Lai Jiang, Kan Wang, Anqi Wang, Fei Chen, Paul J. Newcombe, Christopher A. Haiman, David V. Conti","doi":"10.1002/gepi.22562","DOIUrl":null,"url":null,"abstract":"<p>Recent advancement in genome-wide association studies (GWAS) comes from not only increasingly larger sample sizes but also the shift in focus towards underrepresented populations. Multipopulation GWAS increase power to detect novel risk variants and improve fine-mapping resolution by leveraging evidence and differences in linkage disequilibrium (LD) from diverse populations. Here, we expand upon our previous approach for single-population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a multipopulation analysis (mJAM). Under the assumption that true causal variants are common across studies, we implement a hierarchical model framework that conditions on multiple SNPs while explicitly incorporating the different LD structures across populations. The mJAM framework can be used to first select index variants using the mJAM likelihood with different feature selection approaches. In addition, we present a novel approach leveraging the ideas of mediation to construct credible sets for these index variants. Construction of such credible sets can be performed given any existing index variants. We illustrate the implementation of the mJAM likelihood through two implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. Through simulation studies based on realistic effect sizes and levels of LD, we demonstrated that mJAM performs well for constructing concise credible sets that include the underlying causal variants. In real data examples taken from the most recent multipopulation prostate cancer GWAS, we showed several practical advantages of mJAM over other existing multipopulation methods.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 6","pages":"241-257"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22562","citationCount":"0","resultStr":"{\"title\":\"Hierarchical joint analysis of marginal summary statistics—Part I: Multipopulation fine mapping and credible set construction\",\"authors\":\"Jiayi Shen, Lai Jiang, Kan Wang, Anqi Wang, Fei Chen, Paul J. Newcombe, Christopher A. Haiman, David V. Conti\",\"doi\":\"10.1002/gepi.22562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancement in genome-wide association studies (GWAS) comes from not only increasingly larger sample sizes but also the shift in focus towards underrepresented populations. Multipopulation GWAS increase power to detect novel risk variants and improve fine-mapping resolution by leveraging evidence and differences in linkage disequilibrium (LD) from diverse populations. Here, we expand upon our previous approach for single-population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a multipopulation analysis (mJAM). Under the assumption that true causal variants are common across studies, we implement a hierarchical model framework that conditions on multiple SNPs while explicitly incorporating the different LD structures across populations. The mJAM framework can be used to first select index variants using the mJAM likelihood with different feature selection approaches. In addition, we present a novel approach leveraging the ideas of mediation to construct credible sets for these index variants. Construction of such credible sets can be performed given any existing index variants. We illustrate the implementation of the mJAM likelihood through two implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. Through simulation studies based on realistic effect sizes and levels of LD, we demonstrated that mJAM performs well for constructing concise credible sets that include the underlying causal variants. In real data examples taken from the most recent multipopulation prostate cancer GWAS, we showed several practical advantages of mJAM over other existing multipopulation methods.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"48 6\",\"pages\":\"241-257\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22562\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22562","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Hierarchical joint analysis of marginal summary statistics—Part I: Multipopulation fine mapping and credible set construction
Recent advancement in genome-wide association studies (GWAS) comes from not only increasingly larger sample sizes but also the shift in focus towards underrepresented populations. Multipopulation GWAS increase power to detect novel risk variants and improve fine-mapping resolution by leveraging evidence and differences in linkage disequilibrium (LD) from diverse populations. Here, we expand upon our previous approach for single-population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a multipopulation analysis (mJAM). Under the assumption that true causal variants are common across studies, we implement a hierarchical model framework that conditions on multiple SNPs while explicitly incorporating the different LD structures across populations. The mJAM framework can be used to first select index variants using the mJAM likelihood with different feature selection approaches. In addition, we present a novel approach leveraging the ideas of mediation to construct credible sets for these index variants. Construction of such credible sets can be performed given any existing index variants. We illustrate the implementation of the mJAM likelihood through two implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. Through simulation studies based on realistic effect sizes and levels of LD, we demonstrated that mJAM performs well for constructing concise credible sets that include the underlying causal variants. In real data examples taken from the most recent multipopulation prostate cancer GWAS, we showed several practical advantages of mJAM over other existing multipopulation methods.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.