{"title":"划分一类多项式指数的素数的特征及其应用","authors":"ANUJ JAKHAR","doi":"10.1017/s0004972724000182","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K = {\\mathbb Q}(\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f(x) = x^n + a(bx+c)^m \\in {\\mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq m<n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{1, \\theta , \\ldots , \\theta ^{n-1}\\}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline11.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}[\\theta ]$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline12.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span>, the symmetric group on <span>n</span> letters.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"301 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS\",\"authors\":\"ANUJ JAKHAR\",\"doi\":\"10.1017/s0004972724000182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K = {\\\\mathbb Q}(\\\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x) = x^n + a(bx+c)^m \\\\in {\\\\mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1\\\\leq m<n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{1, \\\\theta , \\\\ldots , \\\\theta ^{n-1}\\\\}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)$</span></span></img></span></span> to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}[\\\\theta ]$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_K$</span></span></img></span></span>. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_n$</span></span></img></span></span>, the symmetric group on <span>n</span> letters.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"301 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS
Let ${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field $K = {\mathbb Q}(\theta )$, where $\theta $ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, $1\leq m<n$. We say $f(x)$ is monogenic if $\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for ${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only $a, b, c, m, n$ for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup ${\mathbb {Z}}[\theta ]$ in ${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group $S_n$, the symmetric group on n letters.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society