划分一类多项式指数的素数的特征及其应用

IF 0.6 4区 数学 Q3 MATHEMATICS
ANUJ JAKHAR
{"title":"划分一类多项式指数的素数的特征及其应用","authors":"ANUJ JAKHAR","doi":"10.1017/s0004972724000182","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K = {\\mathbb Q}(\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f(x) = x^n + a(bx+c)^m \\in {\\mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq m&lt;n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{1, \\theta , \\ldots , \\theta ^{n-1}\\}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline11.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}[\\theta ]$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline12.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span>, the symmetric group on <span>n</span> letters.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"301 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS\",\"authors\":\"ANUJ JAKHAR\",\"doi\":\"10.1017/s0004972724000182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K = {\\\\mathbb Q}(\\\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x) = x^n + a(bx+c)^m \\\\in {\\\\mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1\\\\leq m&lt;n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{1, \\\\theta , \\\\ldots , \\\\theta ^{n-1}\\\\}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)$</span></span></img></span></span> to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}[\\\\theta ]$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {Z}}_K$</span></span></img></span></span>. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_n$</span></span></img></span></span>, the symmetric group on <span>n</span> letters.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"301 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 ${\mathbb {Z}}_{K}$ 表示代数数域 $K = {\mathbb Q}(\theta )$ 的代数整数环,其中 $\theta $ 是在 {\mathbb {Z}}[x]$, $1\leq m<n$ 中的一元不可约多项式 $f(x) = x^n + a(bx+c)^m 的根。如果 $\{1, \theta , \ldots , \theta ^{n-1}\}$ 是 ${mathbb {Z}}_K$ 的基,我们就说 $f(x)$ 是单源的。我们给出了只涉及 $a,b,c,m,n$ 的 $f(x)$ 单调性的必要条件和充分条件。此外,我们还描述了 ${mathbb {Z}}[\theta ]$ 在 ${mathbb {Z}}_K$ 中划分子群 ${mathbb {Z}}[\theta ]$ 索引的所有素数的特征。作为应用,我们还提供了一类具有非无平方判别式和伽罗瓦群 $S_n$(n 个字母上的对称群)的单元多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS

Let ${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field $K = {\mathbb Q}(\theta )$, where $\theta $ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, $1\leq m<n$. We say $f(x)$ is monogenic if $\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for ${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only $a, b, c, m, n$ for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup ${\mathbb {Z}}[\theta ]$ in ${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group $S_n$, the symmetric group on n letters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信