Davis M Sharts, Maria T. Almanza, Andrea Victoria Banks, Alyssa M Castellanos, Catherine G O. Hernandez, Monica L Lopez, Daniela Rodriguez, Alina Y Tong, Maximilian R Segeberg, Luiz F. M. Passalacqua, Michael M Abdelsayed
{"title":"Robo-Therm,发现和验证 RNA 温度计的管道","authors":"Davis M Sharts, Maria T. Almanza, Andrea Victoria Banks, Alyssa M Castellanos, Catherine G O. Hernandez, Monica L Lopez, Daniela Rodriguez, Alina Y Tong, Maximilian R Segeberg, Luiz F. M. Passalacqua, Michael M Abdelsayed","doi":"10.1261/rna.079980.124","DOIUrl":null,"url":null,"abstract":"RNA thermometers are highly structured noncoding RNAs located in the 5′ untranslated regions (UTR) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermo-sensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in 5′-UTR of a gene that codes for σ70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects Bacteroides pectinophilus. The other thermometer is in the 5′-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri. Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"121 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robo-Therm, a pipeline to RNA Thermometer discovery and validation\",\"authors\":\"Davis M Sharts, Maria T. Almanza, Andrea Victoria Banks, Alyssa M Castellanos, Catherine G O. Hernandez, Monica L Lopez, Daniela Rodriguez, Alina Y Tong, Maximilian R Segeberg, Luiz F. M. Passalacqua, Michael M Abdelsayed\",\"doi\":\"10.1261/rna.079980.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA thermometers are highly structured noncoding RNAs located in the 5′ untranslated regions (UTR) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermo-sensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in 5′-UTR of a gene that codes for σ70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects Bacteroides pectinophilus. The other thermometer is in the 5′-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri. Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.079980.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.079980.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Robo-Therm, a pipeline to RNA Thermometer discovery and validation
RNA thermometers are highly structured noncoding RNAs located in the 5′ untranslated regions (UTR) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermo-sensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in 5′-UTR of a gene that codes for σ70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects Bacteroides pectinophilus. The other thermometer is in the 5′-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri. Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.