用 Cayley-Hamilton 定理评估矩阵幂级数

Tobias Rindlisbacher
{"title":"用 Cayley-Hamilton 定理评估矩阵幂级数","authors":"Tobias Rindlisbacher","doi":"arxiv-2404.07704","DOIUrl":null,"url":null,"abstract":"The Cayley-Hamilton theorem is used to implement an iterative process for the\nefficient numerical computation of matrix power series and their differentials.\nIn addition to straight-forward applications in lattice gauge theory\nsimulations e.g. to reduce the computational cost of smearing, the method can\nalso be used to simplify the evaluation of SU(N) one-link integrals or the\ncomputation of SU(N) matrix logarithms.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"440 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating matrix power series with the Cayley-Hamilton theorem\",\"authors\":\"Tobias Rindlisbacher\",\"doi\":\"arxiv-2404.07704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cayley-Hamilton theorem is used to implement an iterative process for the\\nefficient numerical computation of matrix power series and their differentials.\\nIn addition to straight-forward applications in lattice gauge theory\\nsimulations e.g. to reduce the computational cost of smearing, the method can\\nalso be used to simplify the evaluation of SU(N) one-link integrals or the\\ncomputation of SU(N) matrix logarithms.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"440 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了直接应用于晶格规理论模拟(如降低涂抹的计算成本),该方法还可用于简化 SU(N) 单链积分的求值或 SU(N) 矩阵对数的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating matrix power series with the Cayley-Hamilton theorem
The Cayley-Hamilton theorem is used to implement an iterative process for the efficient numerical computation of matrix power series and their differentials. In addition to straight-forward applications in lattice gauge theory simulations e.g. to reduce the computational cost of smearing, the method can also be used to simplify the evaluation of SU(N) one-link integrals or the computation of SU(N) matrix logarithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信