{"title":"修改罗瑟梅尔模型参数--无风和各种坡度条件下柯来松针叶表面火势蔓延速度","authors":"Daotong Geng, Guang Yang, Jibin Ning, Ang Li, Zhaoguo Li, Shangjiong Ma, Xinyu Wang, Hongzhou Yu","doi":"10.1071/wf23118","DOIUrl":null,"url":null,"abstract":"<strong> Background</strong><p>The prediction accuracy for the rate of surface fire spread varies in different regions; thus, increasing the prediction accuracy for local fuel types to reduce the destructive consequences of fire is critically needed.</p><strong> Aims</strong><p>The objective of this study is to improve the Rothermel model’s accuracy in predicting the ROS for surface fuel burning in planted forests of <i>Pinus koraiensis</i> in the eastern mountains of north-east China.</p><strong> Methods</strong><p>Fuel beds with various fuel loads and moisture content was constructed on a laboratory burning bed, 276 combustion experiments were performed under multiple slope conditions, and the ROS data from the combustion experiments were used to modify the related parameters in the Rothermel model.</p><strong> Results</strong><p>The surface fire spread rate in <i>Pinus koraiensis</i> plantations was directly predicted using the Rothermel model but had significant errors. The Rothermel model after modification predicted the following: MRE <i>=</i> 25.09%, MAE = 0.46 m min<sup>−1</sup>, and <i>R</i><sup>2</sup> = 0.80.</p><strong> Conclusion</strong><p>The prediction accuracy of the Rothermel model was greatly enhanced through parameter tuning based on in-lab combustion experiments</p><strong> Implications</strong><p>This study provides a method for the local application of the Rothermel model in China and helps with forest fire fighting and management in China.</p>","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the Rothermel model parameters – the rate of surface fire spread of Pinus koraiensis needles under no-wind and various slope conditions\",\"authors\":\"Daotong Geng, Guang Yang, Jibin Ning, Ang Li, Zhaoguo Li, Shangjiong Ma, Xinyu Wang, Hongzhou Yu\",\"doi\":\"10.1071/wf23118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong> Background</strong><p>The prediction accuracy for the rate of surface fire spread varies in different regions; thus, increasing the prediction accuracy for local fuel types to reduce the destructive consequences of fire is critically needed.</p><strong> Aims</strong><p>The objective of this study is to improve the Rothermel model’s accuracy in predicting the ROS for surface fuel burning in planted forests of <i>Pinus koraiensis</i> in the eastern mountains of north-east China.</p><strong> Methods</strong><p>Fuel beds with various fuel loads and moisture content was constructed on a laboratory burning bed, 276 combustion experiments were performed under multiple slope conditions, and the ROS data from the combustion experiments were used to modify the related parameters in the Rothermel model.</p><strong> Results</strong><p>The surface fire spread rate in <i>Pinus koraiensis</i> plantations was directly predicted using the Rothermel model but had significant errors. The Rothermel model after modification predicted the following: MRE <i>=</i> 25.09%, MAE = 0.46 m min<sup>−1</sup>, and <i>R</i><sup>2</sup> = 0.80.</p><strong> Conclusion</strong><p>The prediction accuracy of the Rothermel model was greatly enhanced through parameter tuning based on in-lab combustion experiments</p><strong> Implications</strong><p>This study provides a method for the local application of the Rothermel model in China and helps with forest fire fighting and management in China.</p>\",\"PeriodicalId\":14464,\"journal\":{\"name\":\"International Journal of Wildland Fire\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wildland Fire\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/wf23118\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wildland Fire","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/wf23118","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Modification of the Rothermel model parameters – the rate of surface fire spread of Pinus koraiensis needles under no-wind and various slope conditions
Background
The prediction accuracy for the rate of surface fire spread varies in different regions; thus, increasing the prediction accuracy for local fuel types to reduce the destructive consequences of fire is critically needed.
Aims
The objective of this study is to improve the Rothermel model’s accuracy in predicting the ROS for surface fuel burning in planted forests of Pinus koraiensis in the eastern mountains of north-east China.
Methods
Fuel beds with various fuel loads and moisture content was constructed on a laboratory burning bed, 276 combustion experiments were performed under multiple slope conditions, and the ROS data from the combustion experiments were used to modify the related parameters in the Rothermel model.
Results
The surface fire spread rate in Pinus koraiensis plantations was directly predicted using the Rothermel model but had significant errors. The Rothermel model after modification predicted the following: MRE = 25.09%, MAE = 0.46 m min−1, and R2 = 0.80.
Conclusion
The prediction accuracy of the Rothermel model was greatly enhanced through parameter tuning based on in-lab combustion experiments
Implications
This study provides a method for the local application of the Rothermel model in China and helps with forest fire fighting and management in China.
期刊介绍:
International Journal of Wildland Fire publishes new and significant articles that advance basic and applied research concerning wildland fire. Published papers aim to assist in the understanding of the basic principles of fire as a process, its ecological impact at the stand level and the landscape level, modelling fire and its effects, as well as presenting information on how to effectively and efficiently manage fire. The journal has an international perspective, since wildland fire plays a major social, economic and ecological role around the globe.
The International Journal of Wildland Fire is published on behalf of the International Association of Wildland Fire.