Karla C. Maita, Francisco R. Avila, Ricardo A. Torres-Guzman, John P. Garcia, Gioacchino D. De Sario Velasquez, Sahar Borna, Sally A. Brown, Clifton R. Haider, Olivia S. Ho, Antonio Jorge Forte
{"title":"人工智能在乳房重建中的作用:系统性综述","authors":"Karla C. Maita, Francisco R. Avila, Ricardo A. Torres-Guzman, John P. Garcia, Gioacchino D. De Sario Velasquez, Sahar Borna, Sally A. Brown, Clifton R. Haider, Olivia S. Ho, Antonio Jorge Forte","doi":"10.1007/s12282-024-01582-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Artificial Intelligence (AI) offers an approach to predictive modeling. The model learns to determine specific patterns of undesirable outcomes in a dataset. Therefore, a decision-making algorithm can be built based on these patterns to prevent negative results. This systematic review aimed to evaluate the usefulness of AI in breast reconstruction.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A systematic review was conducted in August 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. MEDLINE, EMBASE, SCOPUS, and Google Scholar online databases were queried to capture all publications studying the use of artificial intelligence in breast reconstruction.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>A total of 23 studies were full text-screened after removing duplicates, and twelve articles fulfilled our inclusion criteria. The Machine Learning algorithms applied for neuropathic pain, lymphedema diagnosis, microvascular abdominal flap failure, donor site complications associated to muscle sparing Transverse Rectus Abdominis flap, surgical complications, financial toxicity, and patient-reported outcomes after breast surgery demonstrated that AI is a helpful tool to accurately predict patient results. In addition, one study used Computer Vision technology to assist in Deep Inferior Epigastric Perforator Artery detection for flap design, considerably reducing the preoperative time compared to manual identification.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>In breast reconstruction, AI can help the surgeon by optimizing the perioperative patients’ counseling to predict negative outcomes, allowing execution of timely interventions and reducing the postoperative burden, which leads to obtaining the most successful results and improving patient satisfaction.</p>","PeriodicalId":56083,"journal":{"name":"Breast Cancer","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The usefulness of artificial intelligence in breast reconstruction: a systematic review\",\"authors\":\"Karla C. Maita, Francisco R. Avila, Ricardo A. Torres-Guzman, John P. Garcia, Gioacchino D. De Sario Velasquez, Sahar Borna, Sally A. Brown, Clifton R. Haider, Olivia S. Ho, Antonio Jorge Forte\",\"doi\":\"10.1007/s12282-024-01582-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Artificial Intelligence (AI) offers an approach to predictive modeling. The model learns to determine specific patterns of undesirable outcomes in a dataset. Therefore, a decision-making algorithm can be built based on these patterns to prevent negative results. This systematic review aimed to evaluate the usefulness of AI in breast reconstruction.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>A systematic review was conducted in August 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. MEDLINE, EMBASE, SCOPUS, and Google Scholar online databases were queried to capture all publications studying the use of artificial intelligence in breast reconstruction.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>A total of 23 studies were full text-screened after removing duplicates, and twelve articles fulfilled our inclusion criteria. The Machine Learning algorithms applied for neuropathic pain, lymphedema diagnosis, microvascular abdominal flap failure, donor site complications associated to muscle sparing Transverse Rectus Abdominis flap, surgical complications, financial toxicity, and patient-reported outcomes after breast surgery demonstrated that AI is a helpful tool to accurately predict patient results. In addition, one study used Computer Vision technology to assist in Deep Inferior Epigastric Perforator Artery detection for flap design, considerably reducing the preoperative time compared to manual identification.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>In breast reconstruction, AI can help the surgeon by optimizing the perioperative patients’ counseling to predict negative outcomes, allowing execution of timely interventions and reducing the postoperative burden, which leads to obtaining the most successful results and improving patient satisfaction.</p>\",\"PeriodicalId\":56083,\"journal\":{\"name\":\"Breast Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12282-024-01582-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12282-024-01582-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
The usefulness of artificial intelligence in breast reconstruction: a systematic review
Background
Artificial Intelligence (AI) offers an approach to predictive modeling. The model learns to determine specific patterns of undesirable outcomes in a dataset. Therefore, a decision-making algorithm can be built based on these patterns to prevent negative results. This systematic review aimed to evaluate the usefulness of AI in breast reconstruction.
Methods
A systematic review was conducted in August 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. MEDLINE, EMBASE, SCOPUS, and Google Scholar online databases were queried to capture all publications studying the use of artificial intelligence in breast reconstruction.
Results
A total of 23 studies were full text-screened after removing duplicates, and twelve articles fulfilled our inclusion criteria. The Machine Learning algorithms applied for neuropathic pain, lymphedema diagnosis, microvascular abdominal flap failure, donor site complications associated to muscle sparing Transverse Rectus Abdominis flap, surgical complications, financial toxicity, and patient-reported outcomes after breast surgery demonstrated that AI is a helpful tool to accurately predict patient results. In addition, one study used Computer Vision technology to assist in Deep Inferior Epigastric Perforator Artery detection for flap design, considerably reducing the preoperative time compared to manual identification.
Conclusions
In breast reconstruction, AI can help the surgeon by optimizing the perioperative patients’ counseling to predict negative outcomes, allowing execution of timely interventions and reducing the postoperative burden, which leads to obtaining the most successful results and improving patient satisfaction.
期刊介绍:
Breast Cancer, the official journal of the Japanese Breast Cancer Society, publishes articles that contribute to progress in the field, in basic or translational research and also in clinical research, seeking to develop a new focus and new perspectives for all who are concerned with breast cancer. The journal welcomes all original articles describing clinical and epidemiological studies and laboratory investigations regarding breast cancer and related diseases. The journal will consider five types of articles: editorials, review articles, original articles, case reports, and rapid communications. Although editorials and review articles will principally be solicited by the editors, they can also be submitted for peer review, as in the case of original articles. The journal provides the best of up-to-date information on breast cancer, presenting readers with high-impact, original work focusing on pivotal issues.