Deziany da Silva Ferreira, Andressa da Cunha Quintana Martins, Pedro Souza Berbert, Renan Miguel dos Anjos, Mario Alfredo de Passos Saraiva, Ana Cristina Miranda Brasileiro, Robert Neil Gerard Miller, Patricia Messenberg Guimaraes
{"title":"野生花生内切酶能增强转基因植物对硬菌的抗性","authors":"Deziany da Silva Ferreira, Andressa da Cunha Quintana Martins, Pedro Souza Berbert, Renan Miguel dos Anjos, Mario Alfredo de Passos Saraiva, Ana Cristina Miranda Brasileiro, Robert Neil Gerard Miller, Patricia Messenberg Guimaraes","doi":"10.1007/s12042-024-09359-z","DOIUrl":null,"url":null,"abstract":"<p>Plant endochitinases promote the cleavage of chitin, a polymer naturally found in the cell walls of fungi and insects. Although such enzymes are widely employed in plant genetic engineering to increase tolerance to pathogenic fungi, endochitinases from wild germplasm are poorly exploited for biotechnological purposes. Wild peanut species (<i>Arachis</i> spp.) have evolved under a range of environmental conditions and display distinct defensive adaptations, harboring high levels of genetic diversity and constituting an attractive source of resistance genes against pathogens. <i>Arachis stenosperma</i> shows broad resistance against various biotic stresses such as nematodes, fungi, and viruses. Previous transcriptome and proteomic studies on <i>A. stenosperma</i> challenged with fungi and nematodes identified differentially expressed genes (DEGs) involved in plant defense responses, including an upregulated endochitinase (<i>AsECHI1)</i>. Here, we characterized endochitinases from 12 different legumes, including wild <i>Arachis</i> species, and evaluated the effects of overexpression of <i>AsECHI1</i> for control of <i>Sclerotinia sclerotiorum</i> in tobacco, singly and in association with an expansin-like B defense-priming gene <i>(AdEXLB8</i>). Both singly and pyramided transgenic tobacco lines overexpressing <i>AsECHI1</i> exhibited a delay in disease progression, and up to a 46% reduction in fungal lesions. Further analysis of transgenic plants showed that the overexpression of <i>AsECHI1</i> led to an increased expression of defense-related genes in the jasmonic acid, auxin, and ethylene biosynthesis pathways, as well as a substantial accumulation of H<sub>2</sub>O<sub>2</sub>. These results suggest that the <i>AsECHI1</i> gene isolated from wild <i>Arachis</i> has the potential to enhance resistance against this highly damaging necrotrophic fungal pathogen, reducing environmental damage related to the use of fungicides and increasing crop sustainability.</p>","PeriodicalId":54356,"journal":{"name":"Tropical Plant Biology","volume":"28 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wild Arachis Endochitinase Enhances Sclerotinia Resistance in Transgenic Plants\",\"authors\":\"Deziany da Silva Ferreira, Andressa da Cunha Quintana Martins, Pedro Souza Berbert, Renan Miguel dos Anjos, Mario Alfredo de Passos Saraiva, Ana Cristina Miranda Brasileiro, Robert Neil Gerard Miller, Patricia Messenberg Guimaraes\",\"doi\":\"10.1007/s12042-024-09359-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant endochitinases promote the cleavage of chitin, a polymer naturally found in the cell walls of fungi and insects. Although such enzymes are widely employed in plant genetic engineering to increase tolerance to pathogenic fungi, endochitinases from wild germplasm are poorly exploited for biotechnological purposes. Wild peanut species (<i>Arachis</i> spp.) have evolved under a range of environmental conditions and display distinct defensive adaptations, harboring high levels of genetic diversity and constituting an attractive source of resistance genes against pathogens. <i>Arachis stenosperma</i> shows broad resistance against various biotic stresses such as nematodes, fungi, and viruses. Previous transcriptome and proteomic studies on <i>A. stenosperma</i> challenged with fungi and nematodes identified differentially expressed genes (DEGs) involved in plant defense responses, including an upregulated endochitinase (<i>AsECHI1)</i>. Here, we characterized endochitinases from 12 different legumes, including wild <i>Arachis</i> species, and evaluated the effects of overexpression of <i>AsECHI1</i> for control of <i>Sclerotinia sclerotiorum</i> in tobacco, singly and in association with an expansin-like B defense-priming gene <i>(AdEXLB8</i>). Both singly and pyramided transgenic tobacco lines overexpressing <i>AsECHI1</i> exhibited a delay in disease progression, and up to a 46% reduction in fungal lesions. Further analysis of transgenic plants showed that the overexpression of <i>AsECHI1</i> led to an increased expression of defense-related genes in the jasmonic acid, auxin, and ethylene biosynthesis pathways, as well as a substantial accumulation of H<sub>2</sub>O<sub>2</sub>. These results suggest that the <i>AsECHI1</i> gene isolated from wild <i>Arachis</i> has the potential to enhance resistance against this highly damaging necrotrophic fungal pathogen, reducing environmental damage related to the use of fungicides and increasing crop sustainability.</p>\",\"PeriodicalId\":54356,\"journal\":{\"name\":\"Tropical Plant Biology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12042-024-09359-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12042-024-09359-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A Wild Arachis Endochitinase Enhances Sclerotinia Resistance in Transgenic Plants
Plant endochitinases promote the cleavage of chitin, a polymer naturally found in the cell walls of fungi and insects. Although such enzymes are widely employed in plant genetic engineering to increase tolerance to pathogenic fungi, endochitinases from wild germplasm are poorly exploited for biotechnological purposes. Wild peanut species (Arachis spp.) have evolved under a range of environmental conditions and display distinct defensive adaptations, harboring high levels of genetic diversity and constituting an attractive source of resistance genes against pathogens. Arachis stenosperma shows broad resistance against various biotic stresses such as nematodes, fungi, and viruses. Previous transcriptome and proteomic studies on A. stenosperma challenged with fungi and nematodes identified differentially expressed genes (DEGs) involved in plant defense responses, including an upregulated endochitinase (AsECHI1). Here, we characterized endochitinases from 12 different legumes, including wild Arachis species, and evaluated the effects of overexpression of AsECHI1 for control of Sclerotinia sclerotiorum in tobacco, singly and in association with an expansin-like B defense-priming gene (AdEXLB8). Both singly and pyramided transgenic tobacco lines overexpressing AsECHI1 exhibited a delay in disease progression, and up to a 46% reduction in fungal lesions. Further analysis of transgenic plants showed that the overexpression of AsECHI1 led to an increased expression of defense-related genes in the jasmonic acid, auxin, and ethylene biosynthesis pathways, as well as a substantial accumulation of H2O2. These results suggest that the AsECHI1 gene isolated from wild Arachis has the potential to enhance resistance against this highly damaging necrotrophic fungal pathogen, reducing environmental damage related to the use of fungicides and increasing crop sustainability.
期刊介绍:
Tropical Plant Biology covers the most rapidly advancing aspects of tropical plant biology including physiology, evolution, development, cellular and molecular biology, genetics, genomics, genomic ecology, and molecular breeding. It publishes articles of original research, but it also accepts review articles and publishes occasional special issues focused on a single tropical crop species or breakthrough. Information published in this journal guides effort to increase the productivity and quality of tropical plants and preserve the world’s plant diversity. The journal serves as the primary source of newly published information for researchers and professionals in all of the aforementioned areas of tropical science.