{"title":"中心对称八角形的五角形刚性","authors":"Richard Evan Schwartz","doi":"10.1093/imrn/rnae050","DOIUrl":null,"url":null,"abstract":"In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that the map is Arnold-Liouville integrable in this case, and then exploring the Lagrangian surface foliation in detail.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentagram Rigidity for Centrally Symmetric Octagons\",\"authors\":\"Richard Evan Schwartz\",\"doi\":\"10.1093/imrn/rnae050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that the map is Arnold-Liouville integrable in this case, and then exploring the Lagrangian surface foliation in detail.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pentagram Rigidity for Centrally Symmetric Octagons
In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that the map is Arnold-Liouville integrable in this case, and then exploring the Lagrangian surface foliation in detail.