均匀流中圆导线的大佩克莱特数强制对流:小雷诺数下的混合近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ehud Yariv
{"title":"均匀流中圆导线的大佩克莱特数强制对流:小雷诺数下的混合近似值","authors":"Ehud Yariv","doi":"10.1017/s0956792524000147","DOIUrl":null,"url":null,"abstract":"<p>We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}\\ll 1$</span></span></img></span></span>. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span>. We here make use of the hybrid approximation of Kropinski, Ward &amp; Keller [(1995) SIAM <span>J. Appl. Math.</span> <span>55</span>, 1484], based upon a robust asymptotic expansion in powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>, a slowly varying function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>, with a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span> via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Pe}\\gg 1$</span></span></img></span></span>. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span> appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$0.5799(S\\,\\mathrm{Pe})^{1/3}$</span></span></img></span></span>. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson &amp; Smith (1968) <span>Phys. Fluids</span> <span>11</span>, 933] even for moderate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-values.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Péclet number forced convection from a circular wire in a uniform stream: hybrid approximations at small Reynolds numbers\",\"authors\":\"Ehud Yariv\",\"doi\":\"10.1017/s0956792524000147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Re}\\\\ll 1$</span></span></img></span></span>. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\log \\\\mathrm{Re}$</span></span></img></span></span>. We here make use of the hybrid approximation of Kropinski, Ward &amp; Keller [(1995) SIAM <span>J. Appl. Math.</span> <span>55</span>, 1484], based upon a robust asymptotic expansion in powers of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Re}$</span></span></img></span></span>. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span>, a slowly varying function of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Re}$</span></span></img></span></span>, with a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Re}$</span></span></img></span></span>-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\log \\\\mathrm{Re}$</span></span></img></span></span> via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Pe}\\\\gg 1$</span></span></img></span></span>. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S$</span></span></img></span></span> appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0.5799(S\\\\,\\\\mathrm{Pe})^{1/3}$</span></span></img></span></span>. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson &amp; Smith (1968) <span>Phys. Fluids</span> <span>11</span>, 933] even for moderate <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Re}$</span></span></img></span></span>-values.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792524000147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在小雷诺数($\mathrm{Re}\ll 1$)条件下,在均匀横流作用下圆柱体的热量或质量传输问题。过去,由于对奇异流动问题的经典分析中固有的局限性,这个问题一直受到阻碍,因为经典分析使用了$log \mathrm{Re}$的反幂的渐近展开。在此,我们使用 Kropinski, Ward & Keller 的混合近似[(1995) SIAM J. Appl.在这种近似方法中,"内部 "流函数是由前因$S$(一个缓慢变化的$\mathrm{Re}$函数)与一个独立于$\mathrm{Re}$的、数学形式简单的 "典型 "解的乘积提供的。通过与非线性单尺度 "外部 "问题数值解的渐近匹配,预因子反过来被确定为$log \mathrm{Re}$的隐含函数,其中圆柱体作为一个点奇点出现。我们利用混合近似来分析大佩克莱特数($\mathrm{Pe}\gg 1$)极限下的传输问题。在这一极限中,输运被限制在圆柱体表面的狭窄边界层中--这一区域包含在流动问题的内部区域中。以 $S$ 作为参数,很容易构建出边界层问题的相似解。它提供的努塞尔特数为 $0.5799(S\,\mathrm{Pe})^{1/3}$。这一渐近预测与精确问题的数值解[Dennis, Hudson & Smith (1968) Phys. Fluids 11, 933]非常接近,即使是中等的 $\mathrm{Re}$ 值也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Péclet number forced convection from a circular wire in a uniform stream: hybrid approximations at small Reynolds numbers

We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, $\mathrm{Re}\ll 1$. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of $\log \mathrm{Re}$. We here make use of the hybrid approximation of Kropinski, Ward & Keller [(1995) SIAM J. Appl. Math. 55, 1484], based upon a robust asymptotic expansion in powers of $\mathrm{Re}$. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor $S$, a slowly varying function of $\mathrm{Re}$, with a $\mathrm{Re}$-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of $\log \mathrm{Re}$ via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, $\mathrm{Pe}\gg 1$. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With $S$ appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as $0.5799(S\,\mathrm{Pe})^{1/3}$. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson & Smith (1968) Phys. Fluids 11, 933] even for moderate $\mathrm{Re}$-values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信