{"title":"基于 ABS-M30i 的 3D 打印生物启发牛骨结构的高应变率响应","authors":"Ali Imran Ansari, Nazir Ahmad Sheikh, Navin Kumar","doi":"10.1177/14644207241244731","DOIUrl":null,"url":null,"abstract":"To investigate osteoporosis caused by aging and the dynamic behavior of male bovine trabecular bone, three age groups of male bovine trabecular bone were chosen, and micro-computed tomography (CT) analysis was performed to develop an image-based bio-inspired computer-aided design (CAD) model of the bone structure. Further experimental and computational studies were carried out to examine the rate-dependent behavior and compressive energy-absorbing capacity of the structure as a function of age. To evaluate this study, a micro-CT-based CAD model of the structure was 3D printed using ABS-M30i material and subjected to quasi-static compression (low strain rate) and high strain rate (split Hopkinson pressure bar) compression. The findings show that 3D-printed bovine structures have distinct high-rate dependence at strain rates greater than 430 s<jats:sup>−1</jats:sup>, as well as sensitivity to strain rate in terms of peak stress, plateau stress, and energy absorption capacity. Using rate-dependent properties, the Johnson–Cook damage plasticity model was used in computational analysis to explain the dynamic behavior of bone due to osteoporosis. Overall, there is good agreement between the numerical simulations and the experimental data, which was obtained by verifying and validating the model against the experimental results.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High strain rate response of ABS-M30i-based 3D printed, bio-inspired, bovine bone structure\",\"authors\":\"Ali Imran Ansari, Nazir Ahmad Sheikh, Navin Kumar\",\"doi\":\"10.1177/14644207241244731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate osteoporosis caused by aging and the dynamic behavior of male bovine trabecular bone, three age groups of male bovine trabecular bone were chosen, and micro-computed tomography (CT) analysis was performed to develop an image-based bio-inspired computer-aided design (CAD) model of the bone structure. Further experimental and computational studies were carried out to examine the rate-dependent behavior and compressive energy-absorbing capacity of the structure as a function of age. To evaluate this study, a micro-CT-based CAD model of the structure was 3D printed using ABS-M30i material and subjected to quasi-static compression (low strain rate) and high strain rate (split Hopkinson pressure bar) compression. The findings show that 3D-printed bovine structures have distinct high-rate dependence at strain rates greater than 430 s<jats:sup>−1</jats:sup>, as well as sensitivity to strain rate in terms of peak stress, plateau stress, and energy absorption capacity. Using rate-dependent properties, the Johnson–Cook damage plasticity model was used in computational analysis to explain the dynamic behavior of bone due to osteoporosis. Overall, there is good agreement between the numerical simulations and the experimental data, which was obtained by verifying and validating the model against the experimental results.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241244731\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241244731","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High strain rate response of ABS-M30i-based 3D printed, bio-inspired, bovine bone structure
To investigate osteoporosis caused by aging and the dynamic behavior of male bovine trabecular bone, three age groups of male bovine trabecular bone were chosen, and micro-computed tomography (CT) analysis was performed to develop an image-based bio-inspired computer-aided design (CAD) model of the bone structure. Further experimental and computational studies were carried out to examine the rate-dependent behavior and compressive energy-absorbing capacity of the structure as a function of age. To evaluate this study, a micro-CT-based CAD model of the structure was 3D printed using ABS-M30i material and subjected to quasi-static compression (low strain rate) and high strain rate (split Hopkinson pressure bar) compression. The findings show that 3D-printed bovine structures have distinct high-rate dependence at strain rates greater than 430 s−1, as well as sensitivity to strain rate in terms of peak stress, plateau stress, and energy absorption capacity. Using rate-dependent properties, the Johnson–Cook damage plasticity model was used in computational analysis to explain the dynamic behavior of bone due to osteoporosis. Overall, there is good agreement between the numerical simulations and the experimental data, which was obtained by verifying and validating the model against the experimental results.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).