{"title":"同源重组有助于修复乙醛诱导的 DNA 损伤","authors":"Kosuke Yamazaki, Tomohiro Iguchi, Yutaka Kanoh, Kazuto Takayasu, Trinh Thi To Ngo, Ayaka Onuki, Hideya Kawaji, Shunji Oshima, Tomomasa Kanda, Hisao Masai, Hiroyuki Sasanuma","doi":"10.1080/15384101.2024.2335028","DOIUrl":null,"url":null,"abstract":"Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes cr...","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homologous recombination contributes to the repair of acetaldehyde-induced DNA damage\",\"authors\":\"Kosuke Yamazaki, Tomohiro Iguchi, Yutaka Kanoh, Kazuto Takayasu, Trinh Thi To Ngo, Ayaka Onuki, Hideya Kawaji, Shunji Oshima, Tomomasa Kanda, Hisao Masai, Hiroyuki Sasanuma\",\"doi\":\"10.1080/15384101.2024.2335028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes cr...\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2024.2335028\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2024.2335028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
乙醛是一种可导致 DNA 损伤并诱发癌症的化学物质,它普遍存在于我们的环境中,如酒精、烟草和食物中。虽然乙醛有可能促进癌症的发生,但它也是一种致癌物质。
Homologous recombination contributes to the repair of acetaldehyde-induced DNA damage
Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes cr...
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.