{"title":"重复微分下 R 对角元素和随机多项式的分数自由卷积","authors":"Andrew Campbell, Sean O’Rourke, David Renfrew","doi":"10.1093/imrn/rnae062","DOIUrl":null,"url":null,"abstract":"We extend the free convolution of Brown measures of $R$-diagonal elements introduced by Kösters and Tikhomirov [ 28] to fractional powers. We then show how this fractional free convolution arises naturally when studying the roots of random polynomials with independent coefficients under repeated differentiation. When the proportion of derivatives to the degree approaches one, we establish central limit theorem-type behavior and discuss stable distributions.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"2011 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fractional free convolution of R-diagonal elements and random polynomials under repeated differentiation\",\"authors\":\"Andrew Campbell, Sean O’Rourke, David Renfrew\",\"doi\":\"10.1093/imrn/rnae062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the free convolution of Brown measures of $R$-diagonal elements introduced by Kösters and Tikhomirov [ 28] to fractional powers. We then show how this fractional free convolution arises naturally when studying the roots of random polynomials with independent coefficients under repeated differentiation. When the proportion of derivatives to the degree approaches one, we establish central limit theorem-type behavior and discuss stable distributions.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The fractional free convolution of R-diagonal elements and random polynomials under repeated differentiation
We extend the free convolution of Brown measures of $R$-diagonal elements introduced by Kösters and Tikhomirov [ 28] to fractional powers. We then show how this fractional free convolution arises naturally when studying the roots of random polynomials with independent coefficients under repeated differentiation. When the proportion of derivatives to the degree approaches one, we establish central limit theorem-type behavior and discuss stable distributions.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.