Lan Wang, Qian Zhang, Peng Zhang, Bowen Wu, Shiyu Du, Kaiqiang Tang, Shao Li
{"title":"利用深度学习对胃癌癌前病变进行内镜前筛查","authors":"Lan Wang, Qian Zhang, Peng Zhang, Bowen Wu, Shiyu Du, Kaiqiang Tang, Shao Li","doi":"10.1101/2024.04.08.24305062","DOIUrl":null,"url":null,"abstract":"<strong>Objective</strong> Given the high cost of endoscopy in gastric cancer (GC) screening, there is an urgent need to explore cost-effective methods for the large-scale prediction of precancerous lesions of gastric cancer (PLGC). We aim to construct a hierarchical artificial intelligence-based multimodal non-invasive method for pre-endoscopic risk screening, to provide tailored recommendations for endoscopy.","PeriodicalId":501258,"journal":{"name":"medRxiv - Gastroenterology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-endoscopic screening of precancerous lesions in gastric cancer using deep learning\",\"authors\":\"Lan Wang, Qian Zhang, Peng Zhang, Bowen Wu, Shiyu Du, Kaiqiang Tang, Shao Li\",\"doi\":\"10.1101/2024.04.08.24305062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Objective</strong> Given the high cost of endoscopy in gastric cancer (GC) screening, there is an urgent need to explore cost-effective methods for the large-scale prediction of precancerous lesions of gastric cancer (PLGC). We aim to construct a hierarchical artificial intelligence-based multimodal non-invasive method for pre-endoscopic risk screening, to provide tailored recommendations for endoscopy.\",\"PeriodicalId\":501258,\"journal\":{\"name\":\"medRxiv - Gastroenterology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Gastroenterology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.08.24305062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.08.24305062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pre-endoscopic screening of precancerous lesions in gastric cancer using deep learning
Objective Given the high cost of endoscopy in gastric cancer (GC) screening, there is an urgent need to explore cost-effective methods for the large-scale prediction of precancerous lesions of gastric cancer (PLGC). We aim to construct a hierarchical artificial intelligence-based multimodal non-invasive method for pre-endoscopic risk screening, to provide tailored recommendations for endoscopy.