{"title":"沙漠蝗虫(Schistocerca gregaria)用自锐的剪刀状下颚进食","authors":"Ulrike G. K. Wegst, Peter Cloetens, Oliver Betz","doi":"10.1098/rsfs.2023.0069","DOIUrl":null,"url":null,"abstract":"<p>The mandibles of the desert locust <i>Schistocerca gregaria</i> (Forsskål, 1775) are digger-shovel-shaped mouthparts that are part of the locust's exoskeleton formed by the insect cuticle. The cuticle is a polymer–fibre composite, which supports, encases and protects the entire body. Mandibles experience heavy loading and wear due to direct contact with hard and abrasive food, just like teeth, their mineralized analogues in vertebrates. With dual-energy X-ray tomography, we image well-defined regions of zinc (Zn)-enriched cuticle at the mandible cutting edges and quantify the Zn concentrations in these regions. Zn is known to increase stiffness, hardness and wear resistance of the otherwise purely polymeric insect cuticle. In <i>S. gregaria,</i> the position of the Zn-enriched cutting-edge regions relative to one another suggests that the mandibles form a scissor-like cutting tool, which sharpens itself as the mouthparts shear past one another during feeding. Comparing the architecture of these purely polymeric mandibles with the mineralized incisors of rodents, we find fundamental design differences in cutting-tool structure and performance. Locusts' scissors and rodents’ carving knives perform different functions, because they act on food that differs significantly in properties and shape: softer, sheet-like material in the case of locusts and harder bulk material in the case of rodents.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"72 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desert locusts (Schistocerca gregaria) feed with self-sharpening, scissor-like mandibles\",\"authors\":\"Ulrike G. K. Wegst, Peter Cloetens, Oliver Betz\",\"doi\":\"10.1098/rsfs.2023.0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mandibles of the desert locust <i>Schistocerca gregaria</i> (Forsskål, 1775) are digger-shovel-shaped mouthparts that are part of the locust's exoskeleton formed by the insect cuticle. The cuticle is a polymer–fibre composite, which supports, encases and protects the entire body. Mandibles experience heavy loading and wear due to direct contact with hard and abrasive food, just like teeth, their mineralized analogues in vertebrates. With dual-energy X-ray tomography, we image well-defined regions of zinc (Zn)-enriched cuticle at the mandible cutting edges and quantify the Zn concentrations in these regions. Zn is known to increase stiffness, hardness and wear resistance of the otherwise purely polymeric insect cuticle. In <i>S. gregaria,</i> the position of the Zn-enriched cutting-edge regions relative to one another suggests that the mandibles form a scissor-like cutting tool, which sharpens itself as the mouthparts shear past one another during feeding. Comparing the architecture of these purely polymeric mandibles with the mineralized incisors of rodents, we find fundamental design differences in cutting-tool structure and performance. Locusts' scissors and rodents’ carving knives perform different functions, because they act on food that differs significantly in properties and shape: softer, sheet-like material in the case of locusts and harder bulk material in the case of rodents.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2023.0069\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0069","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
沙漠蝗虫 Schistocerca gregaria(Forsskål,1775 年)的下颚是挖掘铲形口器,是由昆虫角质层形成的蝗虫外骨骼的一部分。角质层是一种聚合物-纤维复合材料,支撑、包裹并保护整个身体。下颚由于直接接触坚硬和磨蚀性的食物而承受着巨大的负荷和磨损,就像脊椎动物的矿化类似物--牙齿一样。通过双能 X 射线断层扫描,我们对下颌骨切削边缘富锌(Zn)角质层的明确区域进行了成像,并对这些区域的锌浓度进行了量化。众所周知,锌能增加昆虫角质层的硬度、刚度和耐磨性。在 S. gregaria 中,富含锌的切割边缘区域的相对位置表明,下颚形成了一个类似剪刀的切割工具,在进食过程中,当口器相互剪切时,该工具会变得锋利。将这些纯聚合物下颚的结构与啮齿动物的矿化门齿进行比较,我们发现两者在切割工具的结构和性能方面存在根本性的设计差异。蝗虫的剪刀和啮齿动物的刻刀发挥着不同的功能,因为它们作用的食物在性质和形状上有很大的不同:蝗虫的食物是较软的片状材料,而啮齿动物的食物则是较硬的块状材料。
Desert locusts (Schistocerca gregaria) feed with self-sharpening, scissor-like mandibles
The mandibles of the desert locust Schistocerca gregaria (Forsskål, 1775) are digger-shovel-shaped mouthparts that are part of the locust's exoskeleton formed by the insect cuticle. The cuticle is a polymer–fibre composite, which supports, encases and protects the entire body. Mandibles experience heavy loading and wear due to direct contact with hard and abrasive food, just like teeth, their mineralized analogues in vertebrates. With dual-energy X-ray tomography, we image well-defined regions of zinc (Zn)-enriched cuticle at the mandible cutting edges and quantify the Zn concentrations in these regions. Zn is known to increase stiffness, hardness and wear resistance of the otherwise purely polymeric insect cuticle. In S. gregaria, the position of the Zn-enriched cutting-edge regions relative to one another suggests that the mandibles form a scissor-like cutting tool, which sharpens itself as the mouthparts shear past one another during feeding. Comparing the architecture of these purely polymeric mandibles with the mineralized incisors of rodents, we find fundamental design differences in cutting-tool structure and performance. Locusts' scissors and rodents’ carving knives perform different functions, because they act on food that differs significantly in properties and shape: softer, sheet-like material in the case of locusts and harder bulk material in the case of rodents.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.