求助PDF
{"title":"带谐波势的分数非线性椭圆方程基态的唯一性","authors":"Tianxiang Gou","doi":"10.1017/prm.2024.44","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ (-\\Delta)^s u+ \\left(\\omega+|x|^2\\right) u=|u|^{p-2}u \\quad \\mbox{in}\\ \\mathbb{R}^n, \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000441_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n \\geq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline1.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0< s<1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega >-\\lambda _{1,s}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2< p< {2n}/{(n-2s)^+}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda _{1,s}>0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline5.png\" /> </jats:alternatives> </jats:inline-formula> is the lowest eigenvalue of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\Delta )^s + |x|^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline6.png\" /> </jats:alternatives> </jats:inline-formula>. The fractional Laplacian <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\Delta )^s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline7.png\" /> </jats:alternatives> </jats:inline-formula> is characterized as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {F}((-\\Delta )^{s}u)(\\xi )=|\\xi |^{2s} \\mathcal {F}(u)(\\xi )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\xi \\in \\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {F}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline10.png\" /> </jats:alternatives> </jats:inline-formula> denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"124 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential\",\"authors\":\"Tianxiang Gou\",\"doi\":\"10.1017/prm.2024.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\[ (-\\\\Delta)^s u+ \\\\left(\\\\omega+|x|^2\\\\right) u=|u|^{p-2}u \\\\quad \\\\mbox{in}\\\\ \\\\mathbb{R}^n, \\\\]</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0308210524000441_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n \\\\geq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0< s<1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\omega >-\\\\lambda _{1,s}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2< p< {2n}/{(n-2s)^+}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\lambda _{1,s}>0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> is the lowest eigenvalue of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\\\Delta )^s + |x|^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula>. The fractional Laplacian <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\\\Delta )^s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> is characterized as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {F}((-\\\\Delta )^{s}u)(\\\\xi )=|\\\\xi |^{2s} \\\\mathcal {F}(u)(\\\\xi )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\xi \\\\in \\\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {F}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula> denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.44\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.44","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential
In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, \[ (-\Delta)^s u+ \left(\omega+|x|^2\right) u=|u|^{p-2}u \quad \mbox{in}\ \mathbb{R}^n, \] where $n \geq 1$ , $0< s<1$ , $\omega >-\lambda _{1,s}$ , $2< p< {2n}/{(n-2s)^+}$ , $\lambda _{1,s}>0$ is the lowest eigenvalue of $(-\Delta )^s + |x|^2$ . The fractional Laplacian $(-\Delta )^s$ is characterized as $\mathcal {F}((-\Delta )^{s}u)(\xi )=|\xi |^{2s} \mathcal {F}(u)(\xi )$ for $\xi \in \mathbb {R}^n$ , where $\mathcal {F}$ denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.