带谐波势的分数非线性椭圆方程基态的唯一性

IF 1.3 3区 数学 Q1 MATHEMATICS
Tianxiang Gou
{"title":"带谐波势的分数非线性椭圆方程基态的唯一性","authors":"Tianxiang Gou","doi":"10.1017/prm.2024.44","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ (-\\Delta)^s u+ \\left(\\omega+|x|^2\\right) u=|u|^{p-2}u \\quad \\mbox{in}\\ \\mathbb{R}^n, \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000441_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n \\geq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline1.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0&lt; s&lt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega &gt;-\\lambda _{1,s}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline3.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2&lt; p&lt; {2n}/{(n-2s)^+}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline4.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda _{1,s}&gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline5.png\" /> </jats:alternatives> </jats:inline-formula> is the lowest eigenvalue of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\Delta )^s + |x|^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline6.png\" /> </jats:alternatives> </jats:inline-formula>. The fractional Laplacian <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\Delta )^s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline7.png\" /> </jats:alternatives> </jats:inline-formula> is characterized as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {F}((-\\Delta )^{s}u)(\\xi )=|\\xi |^{2s} \\mathcal {F}(u)(\\xi )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline8.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\xi \\in \\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline9.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {F}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000441_inline10.png\" /> </jats:alternatives> </jats:inline-formula> denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"124 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential\",\"authors\":\"Tianxiang Gou\",\"doi\":\"10.1017/prm.2024.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\[ (-\\\\Delta)^s u+ \\\\left(\\\\omega+|x|^2\\\\right) u=|u|^{p-2}u \\\\quad \\\\mbox{in}\\\\ \\\\mathbb{R}^n, \\\\]</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0308210524000441_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n \\\\geq 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0&lt; s&lt;1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\omega &gt;-\\\\lambda _{1,s}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2&lt; p&lt; {2n}/{(n-2s)^+}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\lambda _{1,s}&gt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> is the lowest eigenvalue of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\\\Delta )^s + |x|^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula>. The fractional Laplacian <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(-\\\\Delta )^s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> is characterized as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {F}((-\\\\Delta )^{s}u)(\\\\xi )=|\\\\xi |^{2s} \\\\mathcal {F}(u)(\\\\xi )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\xi \\\\in \\\\mathbb {R}^n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {F}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000441_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula> denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.44\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.44","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了以下带谐波势的分数非线性椭圆方程基态的唯一性:[ (-\Delta)^s u+ \left(\omega+|x|^2\right) u=|u|^{p-2}u \quad \mbox{in}\ \mathbb{R}^n, \] 其中 $n \geq 1$ , $0<;s<1$ , $\omega >-\lambda _{1,s}$ , $2< p< {2n}/{(n-2s)^+}$ , $\lambda _{1,s}>0$ 是 $(-\Delta )^s + |x|^2$ 的最小特征值。分数拉普拉斯函数 $(-\Delta )^s$ 的特征为 $\mathcal {F}((-\Delta )^{s}u)(\xi )=|\xi |^{2s} 。\对于 $\xi \in \mathbb {R}^n$ 来说,这里的 $\mathcal {F}$ 表示傅立叶变换。这解决了[M. Stanislavova and A. G. Stefanov.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential
In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, \[ (-\Delta)^s u+ \left(\omega+|x|^2\right) u=|u|^{p-2}u \quad \mbox{in}\ \mathbb{R}^n, \] where $n \geq 1$ , $0< s<1$ , $\omega >-\lambda _{1,s}$ , $2< p< {2n}/{(n-2s)^+}$ , $\lambda _{1,s}>0$ is the lowest eigenvalue of $(-\Delta )^s + |x|^2$ . The fractional Laplacian $(-\Delta )^s$ is characterized as $\mathcal {F}((-\Delta )^{s}u)(\xi )=|\xi |^{2s} \mathcal {F}(u)(\xi )$ for $\xi \in \mathbb {R}^n$ , where $\mathcal {F}$ denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信