{"title":"非易失性主存储器的近似相似意识压缩","authors":"Zhang-Yu Chen, Yu Hua, Peng-Fei Zuo, Yuan-Yuan Sun, Yun-Cheng Guo","doi":"10.1007/s11390-023-2565-7","DOIUrl":null,"url":null,"abstract":"<p>Image bitmaps, i.e., data containing pixels and visual perception, have been widely used in emerging applications for pixel operations while consuming lots of memory space and energy. Compared with legacy DRAM (dynamic random access memory), non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features of high density and intrinsic durability. However, writing NVMs suffers from higher energy consumption and latency compared with read accesses. Existing precise or approximate compression schemes in NVM controllers show limited performance for bitmaps due to the irregular data patterns and variance in bitmaps. We observe the pixel-level similarity when writing bitmaps due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an approximate similarity-aware compression scheme in the NVM module controller, to efficiently compress data for each write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with runs. The storage costs for small runs are further mitigated by reusing the least significant bits of base words. SimCom adaptively selects an appropriate compression mode for various bitmap formats, thus achieving an efficient trade-off between quality and memory performance. We implement SimCom on GEM5/zsim with NVMain and evaluate the performance with real-world image/video workloads. Our results demonstrate the efficacy and efficiency of our SimCom with an efficient quality-performance trade-off.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"100 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Similarity-Aware Compression for Non-Volatile Main Memory\",\"authors\":\"Zhang-Yu Chen, Yu Hua, Peng-Fei Zuo, Yuan-Yuan Sun, Yun-Cheng Guo\",\"doi\":\"10.1007/s11390-023-2565-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image bitmaps, i.e., data containing pixels and visual perception, have been widely used in emerging applications for pixel operations while consuming lots of memory space and energy. Compared with legacy DRAM (dynamic random access memory), non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features of high density and intrinsic durability. However, writing NVMs suffers from higher energy consumption and latency compared with read accesses. Existing precise or approximate compression schemes in NVM controllers show limited performance for bitmaps due to the irregular data patterns and variance in bitmaps. We observe the pixel-level similarity when writing bitmaps due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an approximate similarity-aware compression scheme in the NVM module controller, to efficiently compress data for each write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with runs. The storage costs for small runs are further mitigated by reusing the least significant bits of base words. SimCom adaptively selects an appropriate compression mode for various bitmap formats, thus achieving an efficient trade-off between quality and memory performance. We implement SimCom on GEM5/zsim with NVMain and evaluate the performance with real-world image/video workloads. Our results demonstrate the efficacy and efficiency of our SimCom with an efficient quality-performance trade-off.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-023-2565-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-2565-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Approximate Similarity-Aware Compression for Non-Volatile Main Memory
Image bitmaps, i.e., data containing pixels and visual perception, have been widely used in emerging applications for pixel operations while consuming lots of memory space and energy. Compared with legacy DRAM (dynamic random access memory), non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features of high density and intrinsic durability. However, writing NVMs suffers from higher energy consumption and latency compared with read accesses. Existing precise or approximate compression schemes in NVM controllers show limited performance for bitmaps due to the irregular data patterns and variance in bitmaps. We observe the pixel-level similarity when writing bitmaps due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an approximate similarity-aware compression scheme in the NVM module controller, to efficiently compress data for each write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with runs. The storage costs for small runs are further mitigated by reusing the least significant bits of base words. SimCom adaptively selects an appropriate compression mode for various bitmap formats, thus achieving an efficient trade-off between quality and memory performance. We implement SimCom on GEM5/zsim with NVMain and evaluate the performance with real-world image/video workloads. Our results demonstrate the efficacy and efficiency of our SimCom with an efficient quality-performance trade-off.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas