近似参数化 Clique、CSP 等的近似最优时间下限,ETH 下

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu
{"title":"近似参数化 Clique、CSP 等的近似最优时间下限,ETH 下","authors":"Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu","doi":"arxiv-2404.08870","DOIUrl":null,"url":null,"abstract":"The Parameterized Inapproximability Hypothesis (PIH), which is an analog of\nthe PCP theorem in parameterized complexity, asserts that, there is a constant\n$\\varepsilon> 0$ such that for any computable function\n$f:\\mathbb{N}\\to\\mathbb{N}$, no $f(k)\\cdot n^{O(1)}$-time algorithm can, on\ninput a $k$-variable CSP instance with domain size $n$, find an assignment\nsatisfying $1-\\varepsilon$ fraction of the constraints. A recent work by\nGuruswami, Lin, Ren, Sun, and Wu (STOC'24) established PIH under the\nExponential Time Hypothesis (ETH). In this work, we improve the quantitative aspects of PIH and prove (under\nETH) that approximating sparse parameterized CSPs within a constant factor\nrequires $n^{k^{1-o(1)}}$ time. This immediately implies that, assuming ETH,\nfinding a $(k/2)$-clique in an $n$-vertex graph with a $k$-clique requires\n$n^{k^{1-o(1)}}$ time. We also prove almost optimal time lower bounds for\napproximating $k$-ExactCover and Max $k$-Coverage. Our proof follows the blueprint of the previous work to identify a\n\"vector-structured\" ETH-hard CSP whose satisfiability can be checked via an\nappropriate form of \"parallel\" PCP. Using further ideas in the reduction, we\nguarantee additional structures for constraints in the CSP. We then leverage\nthis to design a parallel PCP of almost linear size based on Reed-Muller codes\nand derandomized low degree testing.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Optimal Time Lower Bound for Approximating Parameterized Clique, CSP, and More, under ETH\",\"authors\":\"Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu\",\"doi\":\"arxiv-2404.08870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Parameterized Inapproximability Hypothesis (PIH), which is an analog of\\nthe PCP theorem in parameterized complexity, asserts that, there is a constant\\n$\\\\varepsilon> 0$ such that for any computable function\\n$f:\\\\mathbb{N}\\\\to\\\\mathbb{N}$, no $f(k)\\\\cdot n^{O(1)}$-time algorithm can, on\\ninput a $k$-variable CSP instance with domain size $n$, find an assignment\\nsatisfying $1-\\\\varepsilon$ fraction of the constraints. A recent work by\\nGuruswami, Lin, Ren, Sun, and Wu (STOC'24) established PIH under the\\nExponential Time Hypothesis (ETH). In this work, we improve the quantitative aspects of PIH and prove (under\\nETH) that approximating sparse parameterized CSPs within a constant factor\\nrequires $n^{k^{1-o(1)}}$ time. This immediately implies that, assuming ETH,\\nfinding a $(k/2)$-clique in an $n$-vertex graph with a $k$-clique requires\\n$n^{k^{1-o(1)}}$ time. We also prove almost optimal time lower bounds for\\napproximating $k$-ExactCover and Max $k$-Coverage. Our proof follows the blueprint of the previous work to identify a\\n\\\"vector-structured\\\" ETH-hard CSP whose satisfiability can be checked via an\\nappropriate form of \\\"parallel\\\" PCP. Using further ideas in the reduction, we\\nguarantee additional structures for constraints in the CSP. We then leverage\\nthis to design a parallel PCP of almost linear size based on Reed-Muller codes\\nand derandomized low degree testing.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数化不可逼近假说(PIH)是参数化复杂性中 PCP 定理的一个类似物,它断言,存在一个常数$\varepsilon> 0$,对于任何可计算函数$f:\没有一个$f(k)\cdot n^{O(1)}$ 时的算法可以在输入一个域大小为$n$的$k$变量 CSP 实例时,找到一个满足$1-\varepsilon$部分约束的赋值。最近,Guruswami、Lin、Ren、Sun 和 Wu(STOC'24)的一项研究建立了指数时间假说(ETH)下的 PIH。在这项工作中,我们改进了 PIH 的定量方面,并证明(在 ETH 下)在常数因子内逼近稀疏参数化 CSP 需要 $n^{k^{1-o(1)}}$ 时间。这立即意味着,假设 ETH,在一个有 $k$-clique 的 $n$ 顶点图中找到一个 $(k/2)$-clique 需要 $n^{k^{1-o(1)}}$ 时间。我们还证明了接近 $k$-ExactCover 和 Max $k$-Coverage 的几乎最优时间下限。我们的证明沿袭了前人的工作蓝图,即找出一种 "向量结构 "的 ETH 难 CSP,通过 "并行 "PCP 的适当形式检查其满足性。利用还原中的进一步想法,我们保证了 CSP 中约束的附加结构。然后,我们利用这一点,基于里德-穆勒代码和去随机化低度测试,设计出了几乎线性大小的并行 PCP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Optimal Time Lower Bound for Approximating Parameterized Clique, CSP, and More, under ETH
The Parameterized Inapproximability Hypothesis (PIH), which is an analog of the PCP theorem in parameterized complexity, asserts that, there is a constant $\varepsilon> 0$ such that for any computable function $f:\mathbb{N}\to\mathbb{N}$, no $f(k)\cdot n^{O(1)}$-time algorithm can, on input a $k$-variable CSP instance with domain size $n$, find an assignment satisfying $1-\varepsilon$ fraction of the constraints. A recent work by Guruswami, Lin, Ren, Sun, and Wu (STOC'24) established PIH under the Exponential Time Hypothesis (ETH). In this work, we improve the quantitative aspects of PIH and prove (under ETH) that approximating sparse parameterized CSPs within a constant factor requires $n^{k^{1-o(1)}}$ time. This immediately implies that, assuming ETH, finding a $(k/2)$-clique in an $n$-vertex graph with a $k$-clique requires $n^{k^{1-o(1)}}$ time. We also prove almost optimal time lower bounds for approximating $k$-ExactCover and Max $k$-Coverage. Our proof follows the blueprint of the previous work to identify a "vector-structured" ETH-hard CSP whose satisfiability can be checked via an appropriate form of "parallel" PCP. Using further ideas in the reduction, we guarantee additional structures for constraints in the CSP. We then leverage this to design a parallel PCP of almost linear size based on Reed-Muller codes and derandomized low degree testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信