{"title":"扭曲布里尔-诺特位置的新实例 I","authors":"L. Brambila-Paz, P. E. Newstead","doi":"10.1142/s0129167x24410039","DOIUrl":null,"url":null,"abstract":"<p>Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"95 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New examples of twisted Brill–Noether loci I\",\"authors\":\"L. Brambila-Paz, P. E. Newstead\",\"doi\":\"10.1142/s0129167x24410039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24410039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24410039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus . Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.