扭曲布里尔-诺特位置的新实例 I

IF 0.6 4区 数学 Q3 MATHEMATICS
L. Brambila-Paz, P. E. Newstead
{"title":"扭曲布里尔-诺特位置的新实例 I","authors":"L. Brambila-Paz, P. E. Newstead","doi":"10.1142/s0129167x24410039","DOIUrl":null,"url":null,"abstract":"<p>Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"95 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New examples of twisted Brill–Noether loci I\",\"authors\":\"L. Brambila-Paz, P. E. Newstead\",\"doi\":\"10.1142/s0129167x24410039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24410039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24410039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在本文中的目的是在属g≥2的曲线上构建扭曲布里尔-诺特位点的新实例。其中许多例子的预期维数为负数。我们还推导出布里渊-诺荷图中存在一个新区域,其点支持非空的标准布里渊-诺荷位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New examples of twisted Brill–Noether loci I

Our purpose in this paper is to construct new examples of twisted Brill–Noether loci on curves of genus g2. Many of these examples have negative expected dimension. We deduce also the existence of a new region in the Brill–Noether map, whose points support non-empty standard Brill–Noether loci.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信