与本质上双射的 1-Cocycles 相关联的局部紧凑群的量化

IF 0.6 4区 数学 Q3 MATHEMATICS
Pierre Bieliavsky, Victor Gayral, Sergey Neshveyev, Lars Tuset
{"title":"与本质上双射的 1-Cocycles 相关联的局部紧凑群的量化","authors":"Pierre Bieliavsky, Victor Gayral, Sergey Neshveyev, Lars Tuset","doi":"10.1142/s0129167x24500277","DOIUrl":null,"url":null,"abstract":"<p>Given an extension <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>→</mo><mi>V</mi><mo>→</mo><mi>G</mi><mo>→</mo><mi>Q</mi><mo>→</mo><mn>1</mn></math></span><span></span> of locally compact groups, with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi></math></span><span></span> abelian, and a compatible essentially bijective <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>-cocycle <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>η</mi><mo>:</mo><mi>Q</mi><mo>→</mo><mover accent=\"true\"><mrow><mi>V</mi></mrow><mo>̂</mo></mover></math></span><span></span>, we define a dual unitary <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>-cocycle on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> and show that the associated deformation of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>Ĝ</mi></math></span><span></span> is a cocycle bicrossed product defined by a matched pair of subgroups of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi><mo stretchy=\"false\">⋉</mo><mover accent=\"true\"><mrow><mi>V</mi></mrow><mo>̂</mo></mover></math></span><span></span>. We also discuss an interpretation of our construction from the point of view of Kac cohomology for matched pairs. Our setup generalizes that of Etingof and Gelaki for finite groups and its extension due to Ben David and Ginosar, as well as our earlier work on locally compact groups satisfying the dual orbit condition. In particular, we get a locally compact quantum group from every involutive nondegenerate set-theoretical solution of the Yang–Baxter equation, or more generally, from every brace structure. On the technical side, the key new points are constructions of an irreducible projective representation of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and a unitary quantization map <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>→</mo><mstyle><mtext mathvariant=\"normal\">HS</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> of Kohn–Nirenberg type.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of locally compact groups associated with essentially bijective 1-cocycles\",\"authors\":\"Pierre Bieliavsky, Victor Gayral, Sergey Neshveyev, Lars Tuset\",\"doi\":\"10.1142/s0129167x24500277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an extension <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn><mo>→</mo><mi>V</mi><mo>→</mo><mi>G</mi><mo>→</mo><mi>Q</mi><mo>→</mo><mn>1</mn></math></span><span></span> of locally compact groups, with <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>V</mi></math></span><span></span> abelian, and a compatible essentially bijective <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span>-cocycle <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>η</mi><mo>:</mo><mi>Q</mi><mo>→</mo><mover accent=\\\"true\\\"><mrow><mi>V</mi></mrow><mo>̂</mo></mover></math></span><span></span>, we define a dual unitary <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span>-cocycle on <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> and show that the associated deformation of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Ĝ</mi></math></span><span></span> is a cocycle bicrossed product defined by a matched pair of subgroups of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Q</mi><mo stretchy=\\\"false\\\">⋉</mo><mover accent=\\\"true\\\"><mrow><mi>V</mi></mrow><mo>̂</mo></mover></math></span><span></span>. We also discuss an interpretation of our construction from the point of view of Kac cohomology for matched pairs. Our setup generalizes that of Etingof and Gelaki for finite groups and its extension due to Ben David and Ginosar, as well as our earlier work on locally compact groups satisfying the dual orbit condition. In particular, we get a locally compact quantum group from every involutive nondegenerate set-theoretical solution of the Yang–Baxter equation, or more generally, from every brace structure. On the technical side, the key new points are constructions of an irreducible projective representation of <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> on <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>Q</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and a unitary quantization map <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><mstyle><mtext mathvariant=\\\"normal\\\">HS</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>Q</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of Kohn–Nirenberg type.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500277\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500277","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定局部紧密群的扩展 0→V→G→Q→1,其中 V 是无性的,以及一个相容的本质上双射的 1 循环 η:Q→V̂,我们定义了 G 上的对偶单元 2 循环,并证明Ĝ 的相关变形是由 Q⋉V ̂ 的一对匹配子群定义的循环双交积。我们还讨论了从匹配对的 Kac 同调的角度对我们的构造的解释。我们的设置概括了 Etingof 和 Gelaki 对有限群的设置、Ben David 和 Ginosar 对其的扩展,以及我们早期对满足对偶轨道条件的局部紧凑群的研究。特别是,我们从杨-巴克斯特方程的每一个渐开非enerate集合理论解,或者更广义地说,从每一个支撑结构,都可以得到一个局部紧凑的量子群。在技术方面,新的关键点在于构建了 G 在 L2(Q) 上的不可还原投影表示和 Kohn-Nirenberg 类型的单元量子化映射 L2(G)→HS(L2(Q))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization of locally compact groups associated with essentially bijective 1-cocycles

Given an extension 0VGQ1 of locally compact groups, with V abelian, and a compatible essentially bijective 1-cocycle η:QV̂, we define a dual unitary 2-cocycle on G and show that the associated deformation of Ĝ is a cocycle bicrossed product defined by a matched pair of subgroups of QV̂. We also discuss an interpretation of our construction from the point of view of Kac cohomology for matched pairs. Our setup generalizes that of Etingof and Gelaki for finite groups and its extension due to Ben David and Ginosar, as well as our earlier work on locally compact groups satisfying the dual orbit condition. In particular, we get a locally compact quantum group from every involutive nondegenerate set-theoretical solution of the Yang–Baxter equation, or more generally, from every brace structure. On the technical side, the key new points are constructions of an irreducible projective representation of G on L2(Q) and a unitary quantization map L2(G)HS(L2(Q)) of Kohn–Nirenberg type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信