{"title":"参数可变情况下使用深度学习进行肺部声音分类的性能评估","authors":"Zhaoping Wang, Zhiqiang Sun","doi":"10.1186/s13634-024-01148-w","DOIUrl":null,"url":null,"abstract":"<p>It is desired to apply deep learning models (DLMs) to assist physicians in distinguishing abnormal/normal lung sounds as quickly as possible. The performance of DLMs depends on feature-related and model-related parameters heavily. In this paper, the relationship between performance and feature-related parameters of a DLM, i.e., convolutional neural network (CNN) is analyzed through experiments. ICBHI 2017 is selected as the lung sounds dataset. The sensitivity analysis of classification performance of the DLM on three parameters, i.e., the length of lung sounds frame, overlap percentage (OP) of successive frames and feature type, is performed. An augmented and balanced dataset is acquired by the way of white noise addition, time stretching and pitch shifting. The spectrogram and mel frequency cepstrum coefficients of lung sounds are used as features to the CNN, respectively. The results of training and test show that there exists significant difference on performance among various parameter combinations. The parameter OP is performance sensitive. The higher OP, the better performance. It is concluded that for fixed sampling frequency 8 kHz, frame size 128, OP 75% and spectrogram feature is optimum under which the performance is relatively better and no extra computation or storage resources are required.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of lung sounds classification using deep learning under variable parameters\",\"authors\":\"Zhaoping Wang, Zhiqiang Sun\",\"doi\":\"10.1186/s13634-024-01148-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is desired to apply deep learning models (DLMs) to assist physicians in distinguishing abnormal/normal lung sounds as quickly as possible. The performance of DLMs depends on feature-related and model-related parameters heavily. In this paper, the relationship between performance and feature-related parameters of a DLM, i.e., convolutional neural network (CNN) is analyzed through experiments. ICBHI 2017 is selected as the lung sounds dataset. The sensitivity analysis of classification performance of the DLM on three parameters, i.e., the length of lung sounds frame, overlap percentage (OP) of successive frames and feature type, is performed. An augmented and balanced dataset is acquired by the way of white noise addition, time stretching and pitch shifting. The spectrogram and mel frequency cepstrum coefficients of lung sounds are used as features to the CNN, respectively. The results of training and test show that there exists significant difference on performance among various parameter combinations. The parameter OP is performance sensitive. The higher OP, the better performance. It is concluded that for fixed sampling frequency 8 kHz, frame size 128, OP 75% and spectrogram feature is optimum under which the performance is relatively better and no extra computation or storage resources are required.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01148-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01148-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Performance evaluation of lung sounds classification using deep learning under variable parameters
It is desired to apply deep learning models (DLMs) to assist physicians in distinguishing abnormal/normal lung sounds as quickly as possible. The performance of DLMs depends on feature-related and model-related parameters heavily. In this paper, the relationship between performance and feature-related parameters of a DLM, i.e., convolutional neural network (CNN) is analyzed through experiments. ICBHI 2017 is selected as the lung sounds dataset. The sensitivity analysis of classification performance of the DLM on three parameters, i.e., the length of lung sounds frame, overlap percentage (OP) of successive frames and feature type, is performed. An augmented and balanced dataset is acquired by the way of white noise addition, time stretching and pitch shifting. The spectrogram and mel frequency cepstrum coefficients of lung sounds are used as features to the CNN, respectively. The results of training and test show that there exists significant difference on performance among various parameter combinations. The parameter OP is performance sensitive. The higher OP, the better performance. It is concluded that for fixed sampling frequency 8 kHz, frame size 128, OP 75% and spectrogram feature is optimum under which the performance is relatively better and no extra computation or storage resources are required.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.