广义计量布莱克-斯科尔斯方程:走向期权自相似定价

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nizar Riane, Claire David
{"title":"广义计量布莱克-斯科尔斯方程:走向期权自相似定价","authors":"Nizar Riane, Claire David","doi":"10.1007/s11081-024-09885-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, we give a generalized formulation of the Black–Scholes model. The novelty resides in considering the Black–Scholes model to be valid on ’average’, but such that the pointwise option price dynamics depends on a measure representing the investors’ ’uncertainty’. We make use of the theory of non-symmetric Dirichlet forms and the abstract theory of partial differential equations to establish well posedness of the problem. A detailed numerical analysis is given in the case of self-similar measures.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized measure Black–Scholes equation: towards option self-similar pricing\",\"authors\":\"Nizar Riane, Claire David\",\"doi\":\"10.1007/s11081-024-09885-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we give a generalized formulation of the Black–Scholes model. The novelty resides in considering the Black–Scholes model to be valid on ’average’, but such that the pointwise option price dynamics depends on a measure representing the investors’ ’uncertainty’. We make use of the theory of non-symmetric Dirichlet forms and the abstract theory of partial differential equations to establish well posedness of the problem. A detailed numerical analysis is given in the case of self-similar measures.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09885-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09885-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们给出了布莱克-斯科尔斯模型的广义表述。其新颖之处在于,我们认为布莱克-斯科尔斯模型 "平均 "有效,但点式期权价格动态取决于代表投资者 "不确定性 "的度量。我们利用非对称 Dirichlet 形式理论和偏微分方程抽象理论来确定问题的假设性。在自相似度量的情况下,我们给出了详细的数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized measure Black–Scholes equation: towards option self-similar pricing

Generalized measure Black–Scholes equation: towards option self-similar pricing

In this work, we give a generalized formulation of the Black–Scholes model. The novelty resides in considering the Black–Scholes model to be valid on ’average’, but such that the pointwise option price dynamics depends on a measure representing the investors’ ’uncertainty’. We make use of the theory of non-symmetric Dirichlet forms and the abstract theory of partial differential equations to establish well posedness of the problem. A detailed numerical analysis is given in the case of self-similar measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信