某些椭圆希尔势的性质

IF 1.4 3区 数学 Q1 MATHEMATICS
Wei He, Peng Su
{"title":"某些椭圆希尔势的性质","authors":"Wei He,&nbsp;Peng Su","doi":"10.1007/s13324-024-00897-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of some elliptic Hill’s potentials\",\"authors\":\"Wei He,&nbsp;Peng Su\",\"doi\":\"10.1007/s13324-024-00897-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00897-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00897-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是希尔微分方程,它的势由椭圆函数表示,出现在一些物理和数学问题中。分析方法可用于研究势在参数空间渐近区域的局部特性。可以确定势的鞍点位置,当转折点接近鞍点时,也可以确定转折点的位置。结合与微分方程相关的二次微分,这些局部数据给出了最近获得的渐近等值解的定性解释。一个相关的话题是关于双周期椭圆函数系数 ODE 的 Floquet 定理的广义,与实值单周期系数 ODE 的情况相比,它具有一些新的特征。除了局部渐近区域之外,还使用数值方法研究了椭圆势的全局特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Properties of some elliptic Hill’s potentials

Properties of some elliptic Hill’s potentials

Properties of some elliptic Hill’s potentials

We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信