一种适用于特征选择的蚁群优化方法

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Duygu Yilmaz Eroglu, Umut Akcan
{"title":"一种适用于特征选择的蚁群优化方法","authors":"Duygu Yilmaz Eroglu, Umut Akcan","doi":"10.1080/08839514.2024.2335098","DOIUrl":null,"url":null,"abstract":"As information technologies evolve, they generate vast and ever-expanding datasets. This wealth of high-dimensional data presents challenges, including increased computational demands and difficult...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adapted Ant Colony Optimization for Feature Selection\",\"authors\":\"Duygu Yilmaz Eroglu, Umut Akcan\",\"doi\":\"10.1080/08839514.2024.2335098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As information technologies evolve, they generate vast and ever-expanding datasets. This wealth of high-dimensional data presents challenges, including increased computational demands and difficult...\",\"PeriodicalId\":8260,\"journal\":{\"name\":\"Applied Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/08839514.2024.2335098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/08839514.2024.2335098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着信息技术的发展,它们产生了大量不断扩大的数据集。这些丰富的高维数据带来了各种挑战,包括计算需求的增加和数据处理的困难...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adapted Ant Colony Optimization for Feature Selection
As information technologies evolve, they generate vast and ever-expanding datasets. This wealth of high-dimensional data presents challenges, including increased computational demands and difficult...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Artificial Intelligence
Applied Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
5.20
自引率
3.60%
发文量
106
审稿时长
6 months
期刊介绍: Applied Artificial Intelligence addresses concerns in applied research and applications of artificial intelligence (AI). The journal also acts as a medium for exchanging ideas and thoughts about impacts of AI research. Articles highlight advances in uses of AI systems for solving tasks in management, industry, engineering, administration, and education; evaluations of existing AI systems and tools, emphasizing comparative studies and user experiences; and the economic, social, and cultural impacts of AI. Papers on key applications, highlighting methods, time schedules, person-months needed, and other relevant material are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信