集成式超快全光极化子晶体管

Pietro Tassan, Darius Urbonas, Bartos Chmielak, Jens Bolten, Thorsten Wahlbrink, Max C. Lemme, Michael Forster, Ullrich Scherf, Rainer F. Mahrt, Thilo Stöferle
{"title":"集成式超快全光极化子晶体管","authors":"Pietro Tassan, Darius Urbonas, Bartos Chmielak, Jens Bolten, Thorsten Wahlbrink, Max C. Lemme, Michael Forster, Ullrich Scherf, Rainer F. Mahrt, Thilo Stöferle","doi":"arxiv-2404.01868","DOIUrl":null,"url":null,"abstract":"The clock speed of electronic circuits has been stagnant at a few gigahertz\nfor almost two decades because of the breakdown of Dennard scaling, which\nstates that by shrinking the size of transistors they can operate faster while\nmaintaining the same power consumption. Optical computing could overcome this\nroadblock, but the lack of materials with suitably strong nonlinear\ninteractions needed to realize all-optical switches has, so far, precluded the\nfabrication of scalable architectures. Recently, microcavities in the strong\nlight-matter interaction regime enabled all-optical transistors which, when\nused with an embedded organic material, can operate even at room temperature\nwith sub-picosecond switching times, down to the single-photon level. However,\nthe vertical cavity geometry prevents complex circuits with on-chip coupled\ntransistors. Here, by leveraging silicon photonics technology, we show\nexciton-polariton condensation at ambient conditions in micrometer-sized, fully\nintegrated high-index contrast grating microcavities filled with an optically\nactive polymer. By coupling two resonators and exploiting seeded polariton\ncondensation, we demonstrate ultrafast all-optical transistor action and\ncascadability. Our experimental findings open the way for scalable, compact\nall-optical integrated logic circuits that could process optical signals two\norders of magnitude faster than their electrical counterparts.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated ultrafast all-optical polariton transistors\",\"authors\":\"Pietro Tassan, Darius Urbonas, Bartos Chmielak, Jens Bolten, Thorsten Wahlbrink, Max C. Lemme, Michael Forster, Ullrich Scherf, Rainer F. Mahrt, Thilo Stöferle\",\"doi\":\"arxiv-2404.01868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The clock speed of electronic circuits has been stagnant at a few gigahertz\\nfor almost two decades because of the breakdown of Dennard scaling, which\\nstates that by shrinking the size of transistors they can operate faster while\\nmaintaining the same power consumption. Optical computing could overcome this\\nroadblock, but the lack of materials with suitably strong nonlinear\\ninteractions needed to realize all-optical switches has, so far, precluded the\\nfabrication of scalable architectures. Recently, microcavities in the strong\\nlight-matter interaction regime enabled all-optical transistors which, when\\nused with an embedded organic material, can operate even at room temperature\\nwith sub-picosecond switching times, down to the single-photon level. However,\\nthe vertical cavity geometry prevents complex circuits with on-chip coupled\\ntransistors. Here, by leveraging silicon photonics technology, we show\\nexciton-polariton condensation at ambient conditions in micrometer-sized, fully\\nintegrated high-index contrast grating microcavities filled with an optically\\nactive polymer. By coupling two resonators and exploiting seeded polariton\\ncondensation, we demonstrate ultrafast all-optical transistor action and\\ncascadability. Our experimental findings open the way for scalable, compact\\nall-optical integrated logic circuits that could process optical signals two\\norders of magnitude faster than their electrical counterparts.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.01868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.01868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近二十年来,电子电路的时钟速度一直停滞在几千兆赫兹,原因是 "戴纳缩放"(Dennard Scaling)技术的失效。"戴纳缩放 "技术认为,通过缩小晶体管的尺寸,可以在保持相同功耗的情况下加快运行速度。光计算可以克服这一障碍,但迄今为止,由于缺乏实现全光开关所需的具有适当强非线性相互作用的材料,因此无法制造出可扩展的架构。最近,强光-物质相互作用体系中的微腔实现了全光晶体管,当与嵌入式有机材料一起使用时,即使在室温下也能以亚皮秒级的开关时间工作,甚至达到单光子水平。然而,垂直腔体的几何形状阻碍了带有片上耦合晶体管的复杂电路。在这里,我们利用硅光子技术,展示了在环境条件下,在填充了光活性聚合物的微米级全集成高对比度光栅微腔中发生的激子-极化子凝聚现象。通过耦合两个谐振器和利用种子极化子凝聚,我们展示了超快全光晶体管作用和级联能力。我们的实验发现为可扩展的紧凑型全光集成逻辑电路开辟了道路,这种电路处理光信号的速度比处理电子信号的速度快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated ultrafast all-optical polariton transistors
The clock speed of electronic circuits has been stagnant at a few gigahertz for almost two decades because of the breakdown of Dennard scaling, which states that by shrinking the size of transistors they can operate faster while maintaining the same power consumption. Optical computing could overcome this roadblock, but the lack of materials with suitably strong nonlinear interactions needed to realize all-optical switches has, so far, precluded the fabrication of scalable architectures. Recently, microcavities in the strong light-matter interaction regime enabled all-optical transistors which, when used with an embedded organic material, can operate even at room temperature with sub-picosecond switching times, down to the single-photon level. However, the vertical cavity geometry prevents complex circuits with on-chip coupled transistors. Here, by leveraging silicon photonics technology, we show exciton-polariton condensation at ambient conditions in micrometer-sized, fully integrated high-index contrast grating microcavities filled with an optically active polymer. By coupling two resonators and exploiting seeded polariton condensation, we demonstrate ultrafast all-optical transistor action and cascadability. Our experimental findings open the way for scalable, compact all-optical integrated logic circuits that could process optical signals two orders of magnitude faster than their electrical counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信