粗糙波动的函数中心极限定理

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE
Blanka Horvath, Antoine Jacquier, Aitor Muguruza, Andreas Søjmark
{"title":"粗糙波动的函数中心极限定理","authors":"Blanka Horvath, Antoine Jacquier, Aitor Muguruza, Andreas Søjmark","doi":"10.1007/s00780-024-00533-5","DOIUrl":null,"url":null,"abstract":"<p>The non-Markovian nature of rough volatility makes Monte Carlo methods challenging, and it is in fact a major challenge to develop fast and accurate simulation algorithms. We provide an efficient one for stochastic Volterra processes, based on an extension of Donsker’s approximation of Brownian motion to the fractional Brownian case with arbitrary Hurst exponent <span>\\(H \\in (0,1)\\)</span>. Some of the most relevant consequences of this ‘rough Donsker (rDonsker) theorem’ are functional weak convergence results in Skorokhod space for discrete approximations of a large class of rough stochastic volatility models. This justifies the validity of simple and easy-to-implement Monte Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark hybrid scheme and find remarkable agreement (for a large range of values of <span>\\(H\\)</span>). Our rDonsker theorem further provides a weak convergence proof for the hybrid scheme itself and allows constructing binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan options.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional central limit theorems for rough volatility\",\"authors\":\"Blanka Horvath, Antoine Jacquier, Aitor Muguruza, Andreas Søjmark\",\"doi\":\"10.1007/s00780-024-00533-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The non-Markovian nature of rough volatility makes Monte Carlo methods challenging, and it is in fact a major challenge to develop fast and accurate simulation algorithms. We provide an efficient one for stochastic Volterra processes, based on an extension of Donsker’s approximation of Brownian motion to the fractional Brownian case with arbitrary Hurst exponent <span>\\\\(H \\\\in (0,1)\\\\)</span>. Some of the most relevant consequences of this ‘rough Donsker (rDonsker) theorem’ are functional weak convergence results in Skorokhod space for discrete approximations of a large class of rough stochastic volatility models. This justifies the validity of simple and easy-to-implement Monte Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark hybrid scheme and find remarkable agreement (for a large range of values of <span>\\\\(H\\\\)</span>). Our rDonsker theorem further provides a weak convergence proof for the hybrid scheme itself and allows constructing binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan options.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00533-5\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00533-5","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

粗略波动的非马尔可夫性质使得蒙特卡罗方法具有挑战性,事实上,开发快速准确的模拟算法是一项重大挑战。我们为随机 Volterra 过程提供了一种有效的算法,它基于 Donsker 对布朗运动的近似扩展到具有任意 Hurst 指数 (H \ in (0,1)\)的分数布朗情况。这个 "粗糙唐斯克(rDonsker)定理 "的一些最相关的结果,是一大类粗糙随机波动模型的离散近似在斯科罗霍德空间的函数弱收敛结果。这证明了简单易行的蒙特卡洛方法的有效性,我们为此提供了详细的数值公式。我们将这些方法与当前的基准混合方案进行了测试,并发现(在很大的 \(H\) 值范围内)两者具有显著的一致性。我们的 rDonsker 定理进一步为混合方案本身提供了弱收敛性证明,并允许为粗糙波动率模型构建二叉树,这是第一个可用于美式或百慕大期权等早期行使期权的方案(在粗糙波动率背景下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional central limit theorems for rough volatility

Functional central limit theorems for rough volatility

The non-Markovian nature of rough volatility makes Monte Carlo methods challenging, and it is in fact a major challenge to develop fast and accurate simulation algorithms. We provide an efficient one for stochastic Volterra processes, based on an extension of Donsker’s approximation of Brownian motion to the fractional Brownian case with arbitrary Hurst exponent \(H \in (0,1)\). Some of the most relevant consequences of this ‘rough Donsker (rDonsker) theorem’ are functional weak convergence results in Skorokhod space for discrete approximations of a large class of rough stochastic volatility models. This justifies the validity of simple and easy-to-implement Monte Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark hybrid scheme and find remarkable agreement (for a large range of values of \(H\)). Our rDonsker theorem further provides a weak convergence proof for the hybrid scheme itself and allows constructing binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan options.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信