{"title":"工程水泥基复合材料(ECC)在冲击载荷下的破坏行为的周动力学模拟","authors":"Zhanqi Cheng, Xing Ren, Jiyu Tang, Xiangxi Jia, Chengcong Gao","doi":"10.1007/s10999-024-09712-w","DOIUrl":null,"url":null,"abstract":"<div><p>Engineering cementitious composites (ECC) are widely used in concrete structures for resisting impact loads. This paper establishes a peridynamics (PD)-based model for impact crack propagation in ECC, incorporating a failure criterion considering the strain rate effect, to investigate the damage behavior of ECC under impact loading. Firstly, an improved prototype microelastic brittle material (PMB) model considering the strain softening stage is used to model the cementitious matrix of ECC, and the fibers are modeled as one-dimensional rod to establish a PD fully-discrete model of ECC. At the same time, an interface exponential friction attenuation model is introduced. Then, the effectiveness of the model and the PD impact contact algorithm incorporating the strain rate effect was validated through simulations of the four-point bending test on ECC rectangular plates and the drop hammer impact test on plain concrete beams. Finally, the effects of pre-cracks-to-span distance, fiber content, fiber aspect ratio, different strain rate, and impact velocity on the crack propagation and structural deflection of ECC beams under impact loading are investigated.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 5","pages":"1053 - 1076"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peridynamics simulation of failure behavior of engineering cementitious composites (ECC) under impact loading\",\"authors\":\"Zhanqi Cheng, Xing Ren, Jiyu Tang, Xiangxi Jia, Chengcong Gao\",\"doi\":\"10.1007/s10999-024-09712-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Engineering cementitious composites (ECC) are widely used in concrete structures for resisting impact loads. This paper establishes a peridynamics (PD)-based model for impact crack propagation in ECC, incorporating a failure criterion considering the strain rate effect, to investigate the damage behavior of ECC under impact loading. Firstly, an improved prototype microelastic brittle material (PMB) model considering the strain softening stage is used to model the cementitious matrix of ECC, and the fibers are modeled as one-dimensional rod to establish a PD fully-discrete model of ECC. At the same time, an interface exponential friction attenuation model is introduced. Then, the effectiveness of the model and the PD impact contact algorithm incorporating the strain rate effect was validated through simulations of the four-point bending test on ECC rectangular plates and the drop hammer impact test on plain concrete beams. Finally, the effects of pre-cracks-to-span distance, fiber content, fiber aspect ratio, different strain rate, and impact velocity on the crack propagation and structural deflection of ECC beams under impact loading are investigated.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 5\",\"pages\":\"1053 - 1076\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-024-09712-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09712-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Peridynamics simulation of failure behavior of engineering cementitious composites (ECC) under impact loading
Engineering cementitious composites (ECC) are widely used in concrete structures for resisting impact loads. This paper establishes a peridynamics (PD)-based model for impact crack propagation in ECC, incorporating a failure criterion considering the strain rate effect, to investigate the damage behavior of ECC under impact loading. Firstly, an improved prototype microelastic brittle material (PMB) model considering the strain softening stage is used to model the cementitious matrix of ECC, and the fibers are modeled as one-dimensional rod to establish a PD fully-discrete model of ECC. At the same time, an interface exponential friction attenuation model is introduced. Then, the effectiveness of the model and the PD impact contact algorithm incorporating the strain rate effect was validated through simulations of the four-point bending test on ECC rectangular plates and the drop hammer impact test on plain concrete beams. Finally, the effects of pre-cracks-to-span distance, fiber content, fiber aspect ratio, different strain rate, and impact velocity on the crack propagation and structural deflection of ECC beams under impact loading are investigated.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.