平行四边形和恒宽域的最低诺依曼特征值估计值

IF 1.4 3区 数学 Q1 MATHEMATICS
Corentin Léna, Jonathan Rohleder
{"title":"平行四边形和恒宽域的最低诺依曼特征值估计值","authors":"Corentin Léna,&nbsp;Jonathan Rohleder","doi":"10.1007/s13324-024-00900-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00900-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width\",\"authors\":\"Corentin Léna,&nbsp;Jonathan Rohleder\",\"doi\":\"10.1007/s13324-024-00900-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00900-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00900-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00900-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了两类域中 Neumann Laplacian 的第一和第二非难特征值的尖锐上限:平行四边形和恒宽域。这特别给出了 A. Henrot、A. Lemenant 和 I. Lucardesi 最近获得的平行四边形等周不等式的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width

Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width

We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信