类地行星遭受大型撞击期间撞击器核心物质的分布

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Jonathan P. Itcovitz, Auriol S. P. Rae, Thomas M. Davison, Gareth S. Collins, Oliver Shorttle
{"title":"类地行星遭受大型撞击期间撞击器核心物质的分布","authors":"Jonathan P. Itcovitz, Auriol S. P. Rae, Thomas M. Davison, Gareth S. Collins, Oliver Shorttle","doi":"10.3847/psj/ad2ea4","DOIUrl":null,"url":null,"abstract":"Large impacts onto young rocky planets may transform their compositions, creating highly reducing conditions at their surfaces and reintroducing highly siderophile metals to their mantles. Key to these processes is the availability of an impactor’s chemically reduced core material (metallic iron). It is, therefore, important to constrain how much of an impactor’s core remains accessible to a planet’s mantle/surface, how much is sequestered to its core, and how much escapes. Here, we present 3D simulations of such impact scenarios using the shock physics code iSALE to determine the fate of impactor iron. iSALE’s inclusion of material strength is vital in capturing the behavior of both solid and fluid components of the planet and thus characterizing iron sequestration to the core. We find that the mass fractions of impactor core material that accretes to the planet core (<italic toggle=\"yes\">f</italic>\n<sub>core</sub>) or escapes (<italic toggle=\"yes\">f</italic>\n<sub>esc</sub>) can be readily parameterized as a function of a modified specific impact energy, with <inline-formula>\n<tex-math>\n<?CDATA ${f}_{\\mathrm{core}}\\gt {f}_{\\mathrm{esc}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>core</mml:mi></mml:mrow></mml:msub><mml:mo>&gt;</mml:mo><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>esc</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"psjad2ea4ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for a wide set of impacts. These results differ from previous works that do not incorporate material strength. Our work shows that large impacts can place substantial reducing impactor core material in the mantles of young rocky planets. Impact-generated reducing atmospheres may thus be common for such worlds. However, through escape and sequestration to a planet’s core, large fractions of an impactor’s core can be geochemically hidden from a planet’s mantle. Consequently, geochemical estimates of late bombardments of planets based on mantle siderophile element abundances may be underestimates.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"53 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Distribution of Impactor Core Material During Large Impacts on Earth-like Planets\",\"authors\":\"Jonathan P. Itcovitz, Auriol S. P. Rae, Thomas M. Davison, Gareth S. Collins, Oliver Shorttle\",\"doi\":\"10.3847/psj/ad2ea4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large impacts onto young rocky planets may transform their compositions, creating highly reducing conditions at their surfaces and reintroducing highly siderophile metals to their mantles. Key to these processes is the availability of an impactor’s chemically reduced core material (metallic iron). It is, therefore, important to constrain how much of an impactor’s core remains accessible to a planet’s mantle/surface, how much is sequestered to its core, and how much escapes. Here, we present 3D simulations of such impact scenarios using the shock physics code iSALE to determine the fate of impactor iron. iSALE’s inclusion of material strength is vital in capturing the behavior of both solid and fluid components of the planet and thus characterizing iron sequestration to the core. We find that the mass fractions of impactor core material that accretes to the planet core (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>core</sub>) or escapes (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>esc</sub>) can be readily parameterized as a function of a modified specific impact energy, with <inline-formula>\\n<tex-math>\\n<?CDATA ${f}_{\\\\mathrm{core}}\\\\gt {f}_{\\\\mathrm{esc}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>core</mml:mi></mml:mrow></mml:msub><mml:mo>&gt;</mml:mo><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>esc</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"psjad2ea4ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> for a wide set of impacts. These results differ from previous works that do not incorporate material strength. Our work shows that large impacts can place substantial reducing impactor core material in the mantles of young rocky planets. Impact-generated reducing atmospheres may thus be common for such worlds. However, through escape and sequestration to a planet’s core, large fractions of an impactor’s core can be geochemically hidden from a planet’s mantle. Consequently, geochemical estimates of late bombardments of planets based on mantle siderophile element abundances may be underestimates.\",\"PeriodicalId\":34524,\"journal\":{\"name\":\"The Planetary Science Journal\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Planetary Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/psj/ad2ea4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad2ea4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对年轻岩质行星的巨大撞击可能会改变它们的组成,在其表面创造高度还原的条件,并将高度亲铁金属重新引入它们的外壳。这些过程的关键在于撞击物化学还原核心物质(金属铁)的可用性。因此,重要的是要确定撞击器的内核有多少仍可进入行星的地幔/表面,有多少被封存在内核中,又有多少逃逸出去。在这里,我们利用冲击物理代码 iSALE 对这种撞击情景进行了三维模拟,以确定撞击铁的命运。iSALE 包含的材料强度对于捕捉行星固体和流体成分的行为,从而确定铁螯合到内核的特征至关重要。我们发现,撞击器内核物质吸积到行星内核(fcore)或逃逸(esc)的质量分数可以很容易地参数化为修正的特定撞击能量的函数,fcore>esc适用于一系列广泛的撞击。这些结果与之前未考虑材料强度的工作不同。我们的研究表明,大型撞击可以将大量还原性撞击核物质置于年轻岩质行星的外壳中。因此,撞击产生的还原大气可能是这类世界的常见现象。然而,通过逃逸和螯合到行星的内核,撞击物内核的大部分物质可以从地球化学角度隐藏在行星的地幔中。因此,根据地幔嗜酸性元素丰度对行星晚期轰击的地球化学估计可能会被低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Distribution of Impactor Core Material During Large Impacts on Earth-like Planets
Large impacts onto young rocky planets may transform their compositions, creating highly reducing conditions at their surfaces and reintroducing highly siderophile metals to their mantles. Key to these processes is the availability of an impactor’s chemically reduced core material (metallic iron). It is, therefore, important to constrain how much of an impactor’s core remains accessible to a planet’s mantle/surface, how much is sequestered to its core, and how much escapes. Here, we present 3D simulations of such impact scenarios using the shock physics code iSALE to determine the fate of impactor iron. iSALE’s inclusion of material strength is vital in capturing the behavior of both solid and fluid components of the planet and thus characterizing iron sequestration to the core. We find that the mass fractions of impactor core material that accretes to the planet core (f core) or escapes (f esc) can be readily parameterized as a function of a modified specific impact energy, with fcore>fesc for a wide set of impacts. These results differ from previous works that do not incorporate material strength. Our work shows that large impacts can place substantial reducing impactor core material in the mantles of young rocky planets. Impact-generated reducing atmospheres may thus be common for such worlds. However, through escape and sequestration to a planet’s core, large fractions of an impactor’s core can be geochemically hidden from a planet’s mantle. Consequently, geochemical estimates of late bombardments of planets based on mantle siderophile element abundances may be underestimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信