{"title":"具有消失势的强退化薛定谔椭圆方程的无限多解","authors":"Bui Kim My","doi":"10.1007/s13324-024-00903-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are concerned with the existence of infinitely many nontrivial solutions to the following semilinear degenerate elliptic equation </p><div><div><span>$$\\begin{aligned} -\\Delta _\\lambda u + V(x) u = f(x,u) \\quad \\text { in } {\\mathbb {R}}^N, N\\ge 3, \\end{aligned}$$</span></div></div><p>where <span>\\(V: {\\mathbb {R}}^N\\rightarrow {\\mathbb {R}}\\)</span> is a potential function and allowed to be vanishing at infinitely, <span>\\(f: {\\mathbb {R}}^N\\times {\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> is a given function and <span>\\(\\Delta _\\lambda \\)</span> is the strongly degenerate elliptic operator. Under suitable assumptions on the potential <i>V</i> and the nonlinearity <i>f</i>, some results on the multiplicity of solutions are proved. The proofs are based on variational methods, in particular, on the well-known mountain pass lemma of Ambrosetti–Rabinowitz. Due to the vanishing potentials and degeneracy of the operator, some new compact embedding theorems are used in the proof. Our results extend and generalize some existing results (Alves and Souto in J Differ Equ 254:1977–1991, 2013; Hamdani in Asia-Eur J Math 13:2050131, https://doi.org/10.1142/S1793557120501314, 2020; Luyen in Commun Math Anal 22:61–75, 2019; Luyen and Tri in J Math Anal Appl 461:1271–1286, 2018; Tang in J Math Anal Appl 401:407–415, 2013; Toon and Ubilla in Discrete Contin Dyn Syst 40:5831–5843, 2020).</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions of strongly degenerate Schrödinger elliptic equations with vanishing potentials\",\"authors\":\"Bui Kim My\",\"doi\":\"10.1007/s13324-024-00903-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we are concerned with the existence of infinitely many nontrivial solutions to the following semilinear degenerate elliptic equation </p><div><div><span>$$\\\\begin{aligned} -\\\\Delta _\\\\lambda u + V(x) u = f(x,u) \\\\quad \\\\text { in } {\\\\mathbb {R}}^N, N\\\\ge 3, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(V: {\\\\mathbb {R}}^N\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a potential function and allowed to be vanishing at infinitely, <span>\\\\(f: {\\\\mathbb {R}}^N\\\\times {\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a given function and <span>\\\\(\\\\Delta _\\\\lambda \\\\)</span> is the strongly degenerate elliptic operator. Under suitable assumptions on the potential <i>V</i> and the nonlinearity <i>f</i>, some results on the multiplicity of solutions are proved. The proofs are based on variational methods, in particular, on the well-known mountain pass lemma of Ambrosetti–Rabinowitz. Due to the vanishing potentials and degeneracy of the operator, some new compact embedding theorems are used in the proof. Our results extend and generalize some existing results (Alves and Souto in J Differ Equ 254:1977–1991, 2013; Hamdani in Asia-Eur J Math 13:2050131, https://doi.org/10.1142/S1793557120501314, 2020; Luyen in Commun Math Anal 22:61–75, 2019; Luyen and Tri in J Math Anal Appl 461:1271–1286, 2018; Tang in J Math Anal Appl 401:407–415, 2013; Toon and Ubilla in Discrete Contin Dyn Syst 40:5831–5843, 2020).</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00903-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00903-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们关注的是以下半线性退化椭圆方程的无限多非微观解的存在性 $$\begin{aligned} -\Delta _\lambda u + V(x) u = f(x,u) \quad \text { in } {\mathbb {R}}^N, N\ge 3,\end{aligned}$ 其中 \(V: {\mathbb {R}}^N\rightarrow {\mathbb {R}}^N{mathbb {R}}^N, N\ge 3, \end{aligned}$$其中 \(V:{/mathbb {R}}^N\rightarrow {mathbb {R}}\) 是一个势函数并且允许在无限处消失, \(f.)是一个势函数并且允许在无限处消失:{是一个给定函数,(\Δ _\lambda \)是强退化椭圆算子。在关于势 V 和非线性 f 的适当假设下,证明了关于解的多重性的一些结果。证明基于变分法,特别是著名的 Ambrosetti-Rabinowitz 山口 Lemma。由于算子的消失势和退化性,证明中使用了一些新的紧凑嵌入定理。我们的结果扩展和概括了一些现有结果(Alves 和 Souto 在 J Differ Equ 254:1977-1991, 2013; Hamdani 在 Asia-Eur J Math 13:2050131, https://doi.org/10.1142/S1793557120501314, 2020; Luyen 在 Commun Math Anal 22:61-75, 2019; Luyen 和 Tri 在 J Math Anal Appl 461:1271-1286, 2018; Tang 在 J Math Anal Appl 401:407-415, 2013; Toon 和 Ubilla 在 Discrete Contin Dyn Syst 40:5831-5843, 2020)。
Infinitely many solutions of strongly degenerate Schrödinger elliptic equations with vanishing potentials
In this paper, we are concerned with the existence of infinitely many nontrivial solutions to the following semilinear degenerate elliptic equation
$$\begin{aligned} -\Delta _\lambda u + V(x) u = f(x,u) \quad \text { in } {\mathbb {R}}^N, N\ge 3, \end{aligned}$$
where \(V: {\mathbb {R}}^N\rightarrow {\mathbb {R}}\) is a potential function and allowed to be vanishing at infinitely, \(f: {\mathbb {R}}^N\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a given function and \(\Delta _\lambda \) is the strongly degenerate elliptic operator. Under suitable assumptions on the potential V and the nonlinearity f, some results on the multiplicity of solutions are proved. The proofs are based on variational methods, in particular, on the well-known mountain pass lemma of Ambrosetti–Rabinowitz. Due to the vanishing potentials and degeneracy of the operator, some new compact embedding theorems are used in the proof. Our results extend and generalize some existing results (Alves and Souto in J Differ Equ 254:1977–1991, 2013; Hamdani in Asia-Eur J Math 13:2050131, https://doi.org/10.1142/S1793557120501314, 2020; Luyen in Commun Math Anal 22:61–75, 2019; Luyen and Tri in J Math Anal Appl 461:1271–1286, 2018; Tang in J Math Anal Appl 401:407–415, 2013; Toon and Ubilla in Discrete Contin Dyn Syst 40:5831–5843, 2020).
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.