Mónica Condessa, Joana G. Jesus, Cristina Máguas, Johannes J. Le Roux, Helena Trindade
{"title":"入侵的种子:长相思内生种子细菌在其原生地和入侵地之间的比较","authors":"Mónica Condessa, Joana G. Jesus, Cristina Máguas, Johannes J. Le Roux, Helena Trindade","doi":"10.1007/s13199-024-00987-3","DOIUrl":null,"url":null,"abstract":"<p><i>Acacia longifolia</i> is an aggressive invader in Mediterranean-type ecosystems severely impacting biodiversity and ecosystem functions. The species’ invasiveness has been linked to its ability to thrive in nutrient poor soils, high seed production, and quick establishment after fire. In this study, we identify and compare the bacterial endophytes of <i>A. longifolia</i> seeds collected from populations in the species’ native (Australia) and invasive (Portugal) ranges. For this, we characterised the morphology (length, width, and weight) of seeds from two sites in each range and isolated and cultivated bacteria from seeds. DNA fingerprinting and cluster analyses revealed slightly higher, and distinct, bacterial diversity associated with seeds collected from native range populations in comparison to those collected from invasive populations. Sequencing of the 16S rDNA gene identified 119 bacterial isolates from 15 genera, with <i>Curtobacterium</i> strains being common in both ranges. Several differences in bacterial genera were found among ranges and sites: <i>Dermacoccus</i><i>, Frigoribacterium, Kocuria</i><i>, </i><i>Pantoea</i> and <i>Phyllobacterium</i> taxa were each unique to seeds from the native populations, while <i>Brevundimonas</i>, <i>Microbacterium, Rhizobium</i> and <i>Sphingomonas</i> taxa were only found in the invasive seeds. The genus <i>Paraburkholderia</i> occurred in all invasive-range seeds but was not isolated from the native-range. <i>Bacillus</i> and <i>Paenibacillus</i> co-occurred in seeds collected from all invaded sites, but the simultaneous presence of both taxa was not found in native-range seeds. We propose that the bacterial endophytes present in invasive-range seeds may be important players for the invasiveness of <i>A. longifolia,</i> due to their role as plant growth promoters, providing extra capabilities helping acacia expansion.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"50 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The seeds of invasion: a comparison of endophytic seed bacteria of Acacia longifolia between its native and invasive ranges\",\"authors\":\"Mónica Condessa, Joana G. Jesus, Cristina Máguas, Johannes J. Le Roux, Helena Trindade\",\"doi\":\"10.1007/s13199-024-00987-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Acacia longifolia</i> is an aggressive invader in Mediterranean-type ecosystems severely impacting biodiversity and ecosystem functions. The species’ invasiveness has been linked to its ability to thrive in nutrient poor soils, high seed production, and quick establishment after fire. In this study, we identify and compare the bacterial endophytes of <i>A. longifolia</i> seeds collected from populations in the species’ native (Australia) and invasive (Portugal) ranges. For this, we characterised the morphology (length, width, and weight) of seeds from two sites in each range and isolated and cultivated bacteria from seeds. DNA fingerprinting and cluster analyses revealed slightly higher, and distinct, bacterial diversity associated with seeds collected from native range populations in comparison to those collected from invasive populations. Sequencing of the 16S rDNA gene identified 119 bacterial isolates from 15 genera, with <i>Curtobacterium</i> strains being common in both ranges. Several differences in bacterial genera were found among ranges and sites: <i>Dermacoccus</i><i>, Frigoribacterium, Kocuria</i><i>, </i><i>Pantoea</i> and <i>Phyllobacterium</i> taxa were each unique to seeds from the native populations, while <i>Brevundimonas</i>, <i>Microbacterium, Rhizobium</i> and <i>Sphingomonas</i> taxa were only found in the invasive seeds. The genus <i>Paraburkholderia</i> occurred in all invasive-range seeds but was not isolated from the native-range. <i>Bacillus</i> and <i>Paenibacillus</i> co-occurred in seeds collected from all invaded sites, but the simultaneous presence of both taxa was not found in native-range seeds. We propose that the bacterial endophytes present in invasive-range seeds may be important players for the invasiveness of <i>A. longifolia,</i> due to their role as plant growth promoters, providing extra capabilities helping acacia expansion.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00987-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00987-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The seeds of invasion: a comparison of endophytic seed bacteria of Acacia longifolia between its native and invasive ranges
Acacia longifolia is an aggressive invader in Mediterranean-type ecosystems severely impacting biodiversity and ecosystem functions. The species’ invasiveness has been linked to its ability to thrive in nutrient poor soils, high seed production, and quick establishment after fire. In this study, we identify and compare the bacterial endophytes of A. longifolia seeds collected from populations in the species’ native (Australia) and invasive (Portugal) ranges. For this, we characterised the morphology (length, width, and weight) of seeds from two sites in each range and isolated and cultivated bacteria from seeds. DNA fingerprinting and cluster analyses revealed slightly higher, and distinct, bacterial diversity associated with seeds collected from native range populations in comparison to those collected from invasive populations. Sequencing of the 16S rDNA gene identified 119 bacterial isolates from 15 genera, with Curtobacterium strains being common in both ranges. Several differences in bacterial genera were found among ranges and sites: Dermacoccus, Frigoribacterium, Kocuria, Pantoea and Phyllobacterium taxa were each unique to seeds from the native populations, while Brevundimonas, Microbacterium, Rhizobium and Sphingomonas taxa were only found in the invasive seeds. The genus Paraburkholderia occurred in all invasive-range seeds but was not isolated from the native-range. Bacillus and Paenibacillus co-occurred in seeds collected from all invaded sites, but the simultaneous presence of both taxa was not found in native-range seeds. We propose that the bacterial endophytes present in invasive-range seeds may be important players for the invasiveness of A. longifolia, due to their role as plant growth promoters, providing extra capabilities helping acacia expansion.
期刊介绍:
Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field.
Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.