三元混合纳米流体通过可变特性多孔介质的传热分析:非相似方法

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Farwa Haider, Metib Alghamdi, Taseer Muhammad
{"title":"三元混合纳米流体通过可变特性多孔介质的传热分析:非相似方法","authors":"Farwa Haider, Metib Alghamdi, Taseer Muhammad","doi":"10.1142/s0217984924502993","DOIUrl":null,"url":null,"abstract":"<p>This paper aims at developing non-similar solutions for heat transfer augmentation in ternary hybrid nanofluids. Nanofluid is composed of three distinct (Silver, Copper, Aluminum oxide) nanosize particles while water is considered as a base fluid. Darcy–Forchheimer expression with variable porosity and permeability is adopted. Joule heating and viscous dissipations are also considered. Non-similar approach is utilized. Numerical solutions are computed by bvp4c solver of MATLAB. Graphical illustrations for flow and thermal fields behavior are provided. Comparative results are obtained for ternary hybrid nanofluid and nanoliquid. Physical quantities such as skin drag coefficient and Nusselt number are computed and interpreted. Our results reveal that rate of heat transfer augments substantially for Ag/water nanofluid in comparison to other classes of nanofluid.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"24 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer analysis of ternary hybrid nanofluid through variable characteristic porous medium: Non-similar approach\",\"authors\":\"Farwa Haider, Metib Alghamdi, Taseer Muhammad\",\"doi\":\"10.1142/s0217984924502993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims at developing non-similar solutions for heat transfer augmentation in ternary hybrid nanofluids. Nanofluid is composed of three distinct (Silver, Copper, Aluminum oxide) nanosize particles while water is considered as a base fluid. Darcy–Forchheimer expression with variable porosity and permeability is adopted. Joule heating and viscous dissipations are also considered. Non-similar approach is utilized. Numerical solutions are computed by bvp4c solver of MATLAB. Graphical illustrations for flow and thermal fields behavior are provided. Comparative results are obtained for ternary hybrid nanofluid and nanoliquid. Physical quantities such as skin drag coefficient and Nusselt number are computed and interpreted. Our results reveal that rate of heat transfer augments substantially for Ag/water nanofluid in comparison to other classes of nanofluid.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924502993\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924502993","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为三元混合纳米流体的传热增强开发非相似解决方案。纳米流体由三种不同的纳米颗粒(银、铜、氧化铝)组成,水被视为基础流体。采用了具有可变孔隙率和渗透率的达西-福克海默表达式。还考虑了焦耳加热和粘性耗散。采用了非相似方法。数值解由 MATLAB 的 bvp4c 求解器计算。提供了流动和热场行为的图表说明。获得了三元混合纳米流体和纳米液体的比较结果。计算并解释了皮肤阻力系数和努塞尔特数等物理量。结果表明,与其他类型的纳米流体相比,Ag/水纳米流体的传热速率大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer analysis of ternary hybrid nanofluid through variable characteristic porous medium: Non-similar approach

This paper aims at developing non-similar solutions for heat transfer augmentation in ternary hybrid nanofluids. Nanofluid is composed of three distinct (Silver, Copper, Aluminum oxide) nanosize particles while water is considered as a base fluid. Darcy–Forchheimer expression with variable porosity and permeability is adopted. Joule heating and viscous dissipations are also considered. Non-similar approach is utilized. Numerical solutions are computed by bvp4c solver of MATLAB. Graphical illustrations for flow and thermal fields behavior are provided. Comparative results are obtained for ternary hybrid nanofluid and nanoliquid. Physical quantities such as skin drag coefficient and Nusselt number are computed and interpreted. Our results reveal that rate of heat transfer augments substantially for Ag/water nanofluid in comparison to other classes of nanofluid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信