Shahah Almutairi, Farooq Hussain, Mubbashar Nazeer, S. Saleem, Rubina Sultana Mohammed
{"title":"威廉姆森流体通过会聚和发散导管的多相流的扰动解:电渗效应","authors":"Shahah Almutairi, Farooq Hussain, Mubbashar Nazeer, S. Saleem, Rubina Sultana Mohammed","doi":"10.1142/s0217984924503482","DOIUrl":null,"url":null,"abstract":"<p><b>Problem Statement:</b> The hafnium particles are suspended through carrier fluid (Williamson fluid) to discuss the momentum analysis in multiphase flow in two different types of configurations.</p><p><b>Research gap:</b> The analysis of the interaction of hafnium nanoparticles with the Williamson fluid model through the convergent and divergent conduits has not been discussed before.</p><p><b>Methodology:</b> The equation of continuity and momentum equations are used for this analysis. The solution of both fluid and particle velocities is obtained through the perturbation analytical technique. The perturbation solution is also compared with the numerical solution.</p><p><b>Computational results:</b> The Weissenberg number decays the velocity distribution. The suspension of hafnium particles updates the flow distribution through the conduits. The magnitude of the stream function decreases via the Weissenberg number.</p><p><b>Applications:</b> This study can help develop a new approach to cancer therapy by using a high atomic number of nanoparticles.</p><p><b>Originality:</b> This analysis is original and has neither been submitted nor published before.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation solution of multiphase flow of Williamson fluid through convergent and divergent conduits: Electro-osmotic effects\",\"authors\":\"Shahah Almutairi, Farooq Hussain, Mubbashar Nazeer, S. Saleem, Rubina Sultana Mohammed\",\"doi\":\"10.1142/s0217984924503482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Problem Statement:</b> The hafnium particles are suspended through carrier fluid (Williamson fluid) to discuss the momentum analysis in multiphase flow in two different types of configurations.</p><p><b>Research gap:</b> The analysis of the interaction of hafnium nanoparticles with the Williamson fluid model through the convergent and divergent conduits has not been discussed before.</p><p><b>Methodology:</b> The equation of continuity and momentum equations are used for this analysis. The solution of both fluid and particle velocities is obtained through the perturbation analytical technique. The perturbation solution is also compared with the numerical solution.</p><p><b>Computational results:</b> The Weissenberg number decays the velocity distribution. The suspension of hafnium particles updates the flow distribution through the conduits. The magnitude of the stream function decreases via the Weissenberg number.</p><p><b>Applications:</b> This study can help develop a new approach to cancer therapy by using a high atomic number of nanoparticles.</p><p><b>Originality:</b> This analysis is original and has neither been submitted nor published before.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503482\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503482","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Perturbation solution of multiphase flow of Williamson fluid through convergent and divergent conduits: Electro-osmotic effects
Problem Statement: The hafnium particles are suspended through carrier fluid (Williamson fluid) to discuss the momentum analysis in multiphase flow in two different types of configurations.
Research gap: The analysis of the interaction of hafnium nanoparticles with the Williamson fluid model through the convergent and divergent conduits has not been discussed before.
Methodology: The equation of continuity and momentum equations are used for this analysis. The solution of both fluid and particle velocities is obtained through the perturbation analytical technique. The perturbation solution is also compared with the numerical solution.
Computational results: The Weissenberg number decays the velocity distribution. The suspension of hafnium particles updates the flow distribution through the conduits. The magnitude of the stream function decreases via the Weissenberg number.
Applications: This study can help develop a new approach to cancer therapy by using a high atomic number of nanoparticles.
Originality: This analysis is original and has neither been submitted nor published before.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.