Zafar Mahmood, Khadija Rafique, Adnan, Umar Khan, Sidra Jubair, Fuad A. Awwad, Emad A. A. Ismail
{"title":"形状系数对具有滑移条件的倾斜板上纳米流体的磁流体动力浮力薄膜流的影响:不可逆分析","authors":"Zafar Mahmood, Khadija Rafique, Adnan, Umar Khan, Sidra Jubair, Fuad A. Awwad, Emad A. A. Ismail","doi":"10.1142/s0217984924503354","DOIUrl":null,"url":null,"abstract":"<p>This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al<sub>2</sub>O<sub>3</sub>) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al<sub>2</sub>O<sub>3</sub> nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span>) magnetic <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and unsteadiness (<i>A</i>) increase toward mixed convection (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi></math></span><span></span>). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and Bejan number increases.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of shape factor on magnetohydrodynamic buoyancy thin film flow of nanofluid over inclined sheet with slip condition: Irreversibility analysis\",\"authors\":\"Zafar Mahmood, Khadija Rafique, Adnan, Umar Khan, Sidra Jubair, Fuad A. Awwad, Emad A. A. Ismail\",\"doi\":\"10.1142/s0217984924503354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al<sub>2</sub>O<sub>3</sub>) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al<sub>2</sub>O<sub>3</sub> nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction (<span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ϕ</mi></math></span><span></span>) magnetic <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and unsteadiness (<i>A</i>) increase toward mixed convection (<span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>δ</mi></math></span><span></span>). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and Bejan number increases.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503354\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503354","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Significance of shape factor on magnetohydrodynamic buoyancy thin film flow of nanofluid over inclined sheet with slip condition: Irreversibility analysis
This work aims to examine the entropy production, heat transport, and dynamics of the unsteady thin film magnetohydrodynamic (MHD) flow of a nanofluid composed of alumina (Al2O3) and water. The fluid flow is seen to pass over an inclined sheet, taking into account the effects of buoyancy force, viscous dissipation, and joule heating. The system of partial differential equations (PDEs) is optimized under the boundary layer assumptions. Appropriate transformations are used to convert the governing partial differential equations (PDEs) and boundary conditions into dimensionless forms. Using MATLAB’s bvp4c code and a local non-similarity technique with up to second-degree truncation, we can obtain the findings of the enhanced model. The effect of multi-shape Al2O3 nanoparticles on flow, heat, and entropy-generating features is also investigated after the calculated results have been successfully aligned with published data. Mixed convection, nanoparticle volume percent, inclination angle, magnetic field intensity, mass suction, Eckert number, and Biot number are only a few of the governing parameters whose effects are graphically shown for selected values. As a result, the local Nusselt number and skin friction coefficient may be calculated. The skin friction and Nusselt number profiles exhibit a decreasing trend as the values of nanoparticle volume fraction () magnetic and unsteadiness (A) increase toward mixed convection (). On the other hand, Nusselt number profile increases with increasing values of mass suction parameter The profiles of entropy generation and Bejan number show an upsurge as the values of the magnetic parameter and Brinkman number (Br) increase. Conversely, the entropy generation reduces with an increase in the temperature difference parameter and Bejan number increases.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.