从宏观尺度到粒状微观尺度的各向异性弹性应变-梯度连续介质

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
P. Pirmoradi, A. S. J. Suiker, P. Poorsolhjouy
{"title":"从宏观尺度到粒状微观尺度的各向异性弹性应变-梯度连续介质","authors":"P. Pirmoradi,&nbsp;A. S. J. Suiker,&nbsp;P. Poorsolhjouy","doi":"10.1007/s10659-024-10063-y","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-scale framework is constructed for the computation of the stiffness tensors of an elastic strain-gradient continuum endowed with an anisotropic microstructure of arbitrarily-shaped particles. The influence of microstructural features on the macroscopic stiffness tensors is demonstrated by comparing the fourth-order, fifth-order and sixth-order stiffness tensors obtained from macro-scale symmetry considerations to the stiffness tensors deduced from homogenizing the elastic response of the granular microstructure. Special attention is paid to systematically relating the particle properties to the probability density function describing their directional distribution, which allows to explicitly connect the level of anisotropy of the particle assembly to local variations in particle stiffness and morphology. The applicability of the multi-scale framework is exemplified by computing the stiffness tensors for various anisotropic granular media composed of equal-sized spheres. The number of independent coefficients of the homogenized stiffness tensors appears to be determined by the number of independent microstructural parameters, which is equal to, or less than, the number of independent stiffness coefficients following from macro-scale symmetry considerations. Since the modelling framework has a general character, it can be applied to different higher-order granular continua and arbitrary types of material anisotropy.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"156 3","pages":"647 - 680"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-024-10063-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Elastic Strain-Gradient Continuum from the Macro-Scale to the Granular Micro-Scale\",\"authors\":\"P. Pirmoradi,&nbsp;A. S. J. Suiker,&nbsp;P. Poorsolhjouy\",\"doi\":\"10.1007/s10659-024-10063-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A multi-scale framework is constructed for the computation of the stiffness tensors of an elastic strain-gradient continuum endowed with an anisotropic microstructure of arbitrarily-shaped particles. The influence of microstructural features on the macroscopic stiffness tensors is demonstrated by comparing the fourth-order, fifth-order and sixth-order stiffness tensors obtained from macro-scale symmetry considerations to the stiffness tensors deduced from homogenizing the elastic response of the granular microstructure. Special attention is paid to systematically relating the particle properties to the probability density function describing their directional distribution, which allows to explicitly connect the level of anisotropy of the particle assembly to local variations in particle stiffness and morphology. The applicability of the multi-scale framework is exemplified by computing the stiffness tensors for various anisotropic granular media composed of equal-sized spheres. The number of independent coefficients of the homogenized stiffness tensors appears to be determined by the number of independent microstructural parameters, which is equal to, or less than, the number of independent stiffness coefficients following from macro-scale symmetry considerations. Since the modelling framework has a general character, it can be applied to different higher-order granular continua and arbitrary types of material anisotropy.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"156 3\",\"pages\":\"647 - 680\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-024-10063-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-024-10063-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10063-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文构建了一个多尺度框架,用于计算具有各向异性微结构的任意形状颗粒的弹性应变梯度连续体的刚度张量。通过比较从宏观尺度对称性考虑获得的四阶、五阶和六阶刚度张量与从均匀化颗粒微结构弹性响应推导出的刚度张量,证明了微结构特征对宏观刚度张量的影响。特别注意将颗粒特性与描述其方向分布的概率密度函数系统地联系起来,这样就可以将颗粒装配的各向异性水平与颗粒刚度和形态的局部变化明确地联系起来。多尺度框架的适用性体现在计算由等尺寸球体组成的各种各向异性颗粒介质的刚度张量。均匀化刚度张量的独立系数数似乎由独立微观结构参数数决定,等于或小于宏观尺度对称性考虑的独立刚度系数数。由于建模框架具有通用性,因此可应用于不同的高阶粒状连续体和任意类型的材料各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic Elastic Strain-Gradient Continuum from the Macro-Scale to the Granular Micro-Scale

Anisotropic Elastic Strain-Gradient Continuum from the Macro-Scale to the Granular Micro-Scale

A multi-scale framework is constructed for the computation of the stiffness tensors of an elastic strain-gradient continuum endowed with an anisotropic microstructure of arbitrarily-shaped particles. The influence of microstructural features on the macroscopic stiffness tensors is demonstrated by comparing the fourth-order, fifth-order and sixth-order stiffness tensors obtained from macro-scale symmetry considerations to the stiffness tensors deduced from homogenizing the elastic response of the granular microstructure. Special attention is paid to systematically relating the particle properties to the probability density function describing their directional distribution, which allows to explicitly connect the level of anisotropy of the particle assembly to local variations in particle stiffness and morphology. The applicability of the multi-scale framework is exemplified by computing the stiffness tensors for various anisotropic granular media composed of equal-sized spheres. The number of independent coefficients of the homogenized stiffness tensors appears to be determined by the number of independent microstructural parameters, which is equal to, or less than, the number of independent stiffness coefficients following from macro-scale symmetry considerations. Since the modelling framework has a general character, it can be applied to different higher-order granular continua and arbitrary types of material anisotropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信