储能环中兰道空腔驱动的模式-1 不稳定性实验观测

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR
F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares
{"title":"储能环中兰道空腔驱动的模式-1 不稳定性实验观测","authors":"F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares","doi":"10.1103/physrevaccelbeams.27.044403","DOIUrl":null,"url":null,"abstract":"Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, <span>Phys. Rev. Accel. Beams</span> <b>21</b>, 114404 (2018)] and characterized in simulations [T. He, <span>Phys. Rev. Accel. Beams</span> <b>25</b>, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mn>1</mn></math> excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring\",\"authors\":\"F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares\",\"doi\":\"10.1103/physrevaccelbeams.27.044403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, <span>Phys. Rev. Accel. Beams</span> <b>21</b>, 114404 (2018)] and characterized in simulations [T. He, <span>Phys. Rev. Accel. Beams</span> <b>25</b>, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>±</mo><mn>1</mn></math> excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.044403\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.044403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

用于延长储能环中束流的朗道空腔必然会产生很大的阻抗。由于波束延长所需的电场相位特殊,它们往往与共振有相当大的失谐,比主腔的失谐更大。因此,它们的阻抗会激发第一个耦合束模式,使其变得不稳定。这一现象之前已经被预测到[M. Venturini,Phys. Rev. Accel. Beams 21, 114404 (2018)],并在模拟中被描述出来[T. He,Phys. Rev. Accel. Beams 25, 024401 (2022)],但实验观察尚未被记录下来。本文介绍了对第四代光源存储环中朗道腔和主腔激发的耦合束模式-±1的实验观测。测量了不稳定性的特征,如饱和时的振幅和相干频率,并探讨了其与主射频电压的关系。此外,还研究了停放的主腔的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring

Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring
Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, Phys. Rev. Accel. Beams 21, 114404 (2018)] and characterized in simulations [T. He, Phys. Rev. Accel. Beams 25, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-±1 excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信