{"title":"日食事件期间埃塞俄比亚各地总电子含量的变化","authors":"Chali Idosa Uga, Sujan Prasad Gautam, Uluma Edward, Binod Adhikari, Dessalegn Teferi, Ashutosh Giri, Athwart Davis Odhiambo, Ayomide Olabode","doi":"10.1029/2023rs007830","DOIUrl":null,"url":null,"abstract":"This work studies variations of ionospheric total electron content (TEC) during four distinct solar eclipse events over the Ethiopia region. Dual-frequency global positioning system (GPS) data obtained from UNAVCO over Addis Ababa (9.036°N, 38.76°E) and Bahir Dar (11.6°N, 37.34°E) stations are used to examine the ionospheric variability during two annular solar eclipses on 15 January 2010 and 1 September 2016, a partial solar eclipse on 4 January 2011, and a hybrid solar eclipse (the eclipse path starts out as annular but later changes to total) on 3 November 2013. The results show a significant decrease in TEC values during the occurrence of the solar eclipses. Specifically, the TEC values are reduced to −20% and −10% during the annular eclipse on 15 January 2010, −33% and −38% during the partial solar eclipse on 4 January 2011, −26% and −24% during the annular solar eclipse on 1 September 2016, over the Addis Ababa and Bahir Dar stations, respectively. There is only minimal change in TEC of −8% and −9% at Addis Ababa and Bahir stations, respectively, during the 3 November 2013 solar eclipse even if the obstruction rate is high over the study area. Furthermore, the study shows that the spatial gradient of TEC reduction varies at different locations, which is attributed to the distinct amount of reduction in solar radiation reaching the Earth's surface, resulting in reduced photo-ionization. Overall, this study provides insightful information about the behavior of the ionospheric TEC during solar eclipses over Ethiopia and emphasizes the use of dual-frequency GPS data in tracking the variations of the TEC.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in Total Electron Content Over Ethiopia During the Solar Eclipse Events\",\"authors\":\"Chali Idosa Uga, Sujan Prasad Gautam, Uluma Edward, Binod Adhikari, Dessalegn Teferi, Ashutosh Giri, Athwart Davis Odhiambo, Ayomide Olabode\",\"doi\":\"10.1029/2023rs007830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies variations of ionospheric total electron content (TEC) during four distinct solar eclipse events over the Ethiopia region. Dual-frequency global positioning system (GPS) data obtained from UNAVCO over Addis Ababa (9.036°N, 38.76°E) and Bahir Dar (11.6°N, 37.34°E) stations are used to examine the ionospheric variability during two annular solar eclipses on 15 January 2010 and 1 September 2016, a partial solar eclipse on 4 January 2011, and a hybrid solar eclipse (the eclipse path starts out as annular but later changes to total) on 3 November 2013. The results show a significant decrease in TEC values during the occurrence of the solar eclipses. Specifically, the TEC values are reduced to −20% and −10% during the annular eclipse on 15 January 2010, −33% and −38% during the partial solar eclipse on 4 January 2011, −26% and −24% during the annular solar eclipse on 1 September 2016, over the Addis Ababa and Bahir Dar stations, respectively. There is only minimal change in TEC of −8% and −9% at Addis Ababa and Bahir stations, respectively, during the 3 November 2013 solar eclipse even if the obstruction rate is high over the study area. Furthermore, the study shows that the spatial gradient of TEC reduction varies at different locations, which is attributed to the distinct amount of reduction in solar radiation reaching the Earth's surface, resulting in reduced photo-ionization. Overall, this study provides insightful information about the behavior of the ionospheric TEC during solar eclipses over Ethiopia and emphasizes the use of dual-frequency GPS data in tracking the variations of the TEC.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1029/2023rs007830\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1029/2023rs007830","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Variation in Total Electron Content Over Ethiopia During the Solar Eclipse Events
This work studies variations of ionospheric total electron content (TEC) during four distinct solar eclipse events over the Ethiopia region. Dual-frequency global positioning system (GPS) data obtained from UNAVCO over Addis Ababa (9.036°N, 38.76°E) and Bahir Dar (11.6°N, 37.34°E) stations are used to examine the ionospheric variability during two annular solar eclipses on 15 January 2010 and 1 September 2016, a partial solar eclipse on 4 January 2011, and a hybrid solar eclipse (the eclipse path starts out as annular but later changes to total) on 3 November 2013. The results show a significant decrease in TEC values during the occurrence of the solar eclipses. Specifically, the TEC values are reduced to −20% and −10% during the annular eclipse on 15 January 2010, −33% and −38% during the partial solar eclipse on 4 January 2011, −26% and −24% during the annular solar eclipse on 1 September 2016, over the Addis Ababa and Bahir Dar stations, respectively. There is only minimal change in TEC of −8% and −9% at Addis Ababa and Bahir stations, respectively, during the 3 November 2013 solar eclipse even if the obstruction rate is high over the study area. Furthermore, the study shows that the spatial gradient of TEC reduction varies at different locations, which is attributed to the distinct amount of reduction in solar radiation reaching the Earth's surface, resulting in reduced photo-ionization. Overall, this study provides insightful information about the behavior of the ionospheric TEC during solar eclipses over Ethiopia and emphasizes the use of dual-frequency GPS data in tracking the variations of the TEC.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.