宏观相对论电子束的纵向压缩

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR
An Li, Jiaru Shi, Hao Zha, Qiang Gao, Liuyuan Zhou, Huaibi Chen
{"title":"宏观相对论电子束的纵向压缩","authors":"An Li, Jiaru Shi, Hao Zha, Qiang Gao, Liuyuan Zhou, Huaibi Chen","doi":"10.1103/physrevaccelbeams.27.044402","DOIUrl":null,"url":null,"abstract":"We present a novel concept of longitudinal bunch train compression that can manipulate a relativistic electron beam across hundreds of meters. This concept holds the potential to compress the electron beam produced by a conditional linear accelerator at a high ratio, elevating its power to a level comparable with large induction accelerators. The method employs the spiral motion of electrons in a uniform magnetic field to fold hundreds-of-meters-long trajectories into a compact setup. The interval between bunches can be fine-tuned by modulating their spiral movement. We explore this method with the particle dynamic simulation. Compared to setups of similar size, such as a chicane, our method can compress bunches at considerably larger scales. Consequently, it opens up new possibilities for generating high-power beams using compact devices at lower costs.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"71 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal compression of a macrorelativistic electron beam\",\"authors\":\"An Li, Jiaru Shi, Hao Zha, Qiang Gao, Liuyuan Zhou, Huaibi Chen\",\"doi\":\"10.1103/physrevaccelbeams.27.044402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel concept of longitudinal bunch train compression that can manipulate a relativistic electron beam across hundreds of meters. This concept holds the potential to compress the electron beam produced by a conditional linear accelerator at a high ratio, elevating its power to a level comparable with large induction accelerators. The method employs the spiral motion of electrons in a uniform magnetic field to fold hundreds-of-meters-long trajectories into a compact setup. The interval between bunches can be fine-tuned by modulating their spiral movement. We explore this method with the particle dynamic simulation. Compared to setups of similar size, such as a chicane, our method can compress bunches at considerably larger scales. Consequently, it opens up new possibilities for generating high-power beams using compact devices at lower costs.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.044402\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.044402","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的纵向束流压缩概念,它可以操纵跨越数百米的相对论电子束。这一概念可将有条件直线加速器产生的电子束以高比率压缩,将其功率提升到与大型感应加速器相当的水平。这种方法利用电子在均匀磁场中的螺旋运动,将数百米长的轨迹折叠成一个紧凑的装置。电子束之间的间隔可以通过调节其螺旋运动进行微调。我们通过粒子动态模拟来探索这种方法。与类似大小的设置(如驰道)相比,我们的方法可以在更大的尺度上压缩线束。因此,它为使用紧凑型设备以较低成本产生高功率光束提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Longitudinal compression of a macrorelativistic electron beam

Longitudinal compression of a macrorelativistic electron beam
We present a novel concept of longitudinal bunch train compression that can manipulate a relativistic electron beam across hundreds of meters. This concept holds the potential to compress the electron beam produced by a conditional linear accelerator at a high ratio, elevating its power to a level comparable with large induction accelerators. The method employs the spiral motion of electrons in a uniform magnetic field to fold hundreds-of-meters-long trajectories into a compact setup. The interval between bunches can be fine-tuned by modulating their spiral movement. We explore this method with the particle dynamic simulation. Compared to setups of similar size, such as a chicane, our method can compress bunches at considerably larger scales. Consequently, it opens up new possibilities for generating high-power beams using compact devices at lower costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信