非线性准静态挤压弹性问题的非连续伽勒金方法

IF 1.3 4区 数学 Q1 MATHEMATICS
Fan Chen,Ming Cui, Chenguang Zhou
{"title":"非线性准静态挤压弹性问题的非连续伽勒金方法","authors":"Fan Chen,Ming Cui, Chenguang Zhou","doi":"10.4208/ijnam2024-1008","DOIUrl":null,"url":null,"abstract":"This paper is devoted to a discontinuous Galerkin (DG) method for nonlinear quasi-static poroelasticity problems. The fully implicit nonlinear numerical scheme is constructed by\nutilizing DG method for the spatial approximation and the backward Euler method for the temporal discretization. The existence and uniqueness of the numerical solution is proved. Then we\nderive the optimal convergence order estimates in a discrete $H^1$ norm for the displacement and\nin $H^1$ and $L^2$ norms for the pressure. Finally, numerical experiments are supplied to validate the\ntheoretical error estimates of our proposed method.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin Method for Nonlinear Quasi-Static Poroelasticity Problems\",\"authors\":\"Fan Chen,Ming Cui, Chenguang Zhou\",\"doi\":\"10.4208/ijnam2024-1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to a discontinuous Galerkin (DG) method for nonlinear quasi-static poroelasticity problems. The fully implicit nonlinear numerical scheme is constructed by\\nutilizing DG method for the spatial approximation and the backward Euler method for the temporal discretization. The existence and uniqueness of the numerical solution is proved. Then we\\nderive the optimal convergence order estimates in a discrete $H^1$ norm for the displacement and\\nin $H^1$ and $L^2$ norms for the pressure. Finally, numerical experiments are supplied to validate the\\ntheoretical error estimates of our proposed method.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2024-1008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/ijnam2024-1008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于非线性准静态孔弹性问题的非连续伽勒金(DG)方法。利用空间近似的 DG 方法和时间离散的后向欧拉方法构建了全隐式非线性数值方案。证明了数值解的存在性和唯一性。然后,我们得出了位移的离散 $H^1$ 准则和压力的 $H^1$ 和 $L^2$ 准则的最佳收敛阶次估计。最后,通过数值实验验证了我们所提方法的理论误差估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin Method for Nonlinear Quasi-Static Poroelasticity Problems
This paper is devoted to a discontinuous Galerkin (DG) method for nonlinear quasi-static poroelasticity problems. The fully implicit nonlinear numerical scheme is constructed by utilizing DG method for the spatial approximation and the backward Euler method for the temporal discretization. The existence and uniqueness of the numerical solution is proved. Then we derive the optimal convergence order estimates in a discrete $H^1$ norm for the displacement and in $H^1$ and $L^2$ norms for the pressure. Finally, numerical experiments are supplied to validate the theoretical error estimates of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信