{"title":"通过最优传输进行概率空间动态编程","authors":"Antonio Terpin, Nicolas Lanzetti, Florian Dörfler","doi":"10.1137/23m1560902","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 2, Page 1183-1206, April 2024. <br/> Abstract. We study discrete-time finite-horizon optimal control problems in probability spaces, whereby the state of the system is a probability measure. We show that, in many instances, the solution of dynamic programming in probability spaces results from two ingredients: (i) the solution of dynamic programming in the “ground space” (i.e., the space on which the probability measures live) and (ii) the solution of an optimal transport problem. From a multi-agent control perspective, a separation principle holds: “low-level control of the agents of the fleet” (how does one reach the destination?) and “fleet-level control” (who goes where?) are decoupled.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Programming in Probability Spaces via Optimal Transport\",\"authors\":\"Antonio Terpin, Nicolas Lanzetti, Florian Dörfler\",\"doi\":\"10.1137/23m1560902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Control and Optimization, Volume 62, Issue 2, Page 1183-1206, April 2024. <br/> Abstract. We study discrete-time finite-horizon optimal control problems in probability spaces, whereby the state of the system is a probability measure. We show that, in many instances, the solution of dynamic programming in probability spaces results from two ingredients: (i) the solution of dynamic programming in the “ground space” (i.e., the space on which the probability measures live) and (ii) the solution of an optimal transport problem. From a multi-agent control perspective, a separation principle holds: “low-level control of the agents of the fleet” (how does one reach the destination?) and “fleet-level control” (who goes where?) are decoupled.\",\"PeriodicalId\":49531,\"journal\":{\"name\":\"SIAM Journal on Control and Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Control and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1560902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dynamic Programming in Probability Spaces via Optimal Transport
SIAM Journal on Control and Optimization, Volume 62, Issue 2, Page 1183-1206, April 2024. Abstract. We study discrete-time finite-horizon optimal control problems in probability spaces, whereby the state of the system is a probability measure. We show that, in many instances, the solution of dynamic programming in probability spaces results from two ingredients: (i) the solution of dynamic programming in the “ground space” (i.e., the space on which the probability measures live) and (ii) the solution of an optimal transport problem. From a multi-agent control perspective, a separation principle holds: “low-level control of the agents of the fleet” (how does one reach the destination?) and “fleet-level control” (who goes where?) are decoupled.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.