用于后向随机微分方程的理查森外推法克兰克-尼科尔森方案

IF 1.3 4区 数学 Q1 MATHEMATICS
Yafei Xu, Weidong Zhao
{"title":"用于后向随机微分方程的理查森外推法克兰克-尼科尔森方案","authors":"Yafei Xu, Weidong Zhao","doi":"10.4208/ijnam2024-1011","DOIUrl":null,"url":null,"abstract":"In this work, we consider Richardson extrapolation of the Crank-Nicolson (CN)\nscheme for backward stochastic differential equations (BSDEs). First, applying the Adomian\ndecomposition to the nonlinear generator of BSDEs, we introduce a new system of BSDEs. Then\nwe theoretically prove that the solution of the CN scheme for BSDEs admits an asymptotic\nexpansion with its coefficients the solutions of the new system of BSDEs. Based on the expansion,\nwe propose Richardson extrapolation algorithms for solving BSDEs. Finally, some numerical tests\nare carried out to verify our theoretical conclusions and to show the stability, efficiency and high\naccuracy of the algorithms.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"100 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Richardson Extrapolation of the Crank-Nicolson Scheme for Backward Stochastic Differential Equations\",\"authors\":\"Yafei Xu, Weidong Zhao\",\"doi\":\"10.4208/ijnam2024-1011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider Richardson extrapolation of the Crank-Nicolson (CN)\\nscheme for backward stochastic differential equations (BSDEs). First, applying the Adomian\\ndecomposition to the nonlinear generator of BSDEs, we introduce a new system of BSDEs. Then\\nwe theoretically prove that the solution of the CN scheme for BSDEs admits an asymptotic\\nexpansion with its coefficients the solutions of the new system of BSDEs. Based on the expansion,\\nwe propose Richardson extrapolation algorithms for solving BSDEs. Finally, some numerical tests\\nare carried out to verify our theoretical conclusions and to show the stability, efficiency and high\\naccuracy of the algorithms.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2024-1011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/ijnam2024-1011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了针对后向随机微分方程(BSDEs)的克兰克-尼科尔森(CN)方案的理查德森外推法。首先,我们将 Adomiandecomposition 应用于 BSDEs 的非线性生成器,引入了一个新的 BSDEs 系统。然后,我们从理论上证明了 BSDEs 的 CN 方案的解允许一个渐近展开,其系数就是新的 BSDEs 系统的解。基于该展开,我们提出了求解 BSDE 的理查森外推法算法。最后,我们进行了一些数值试验来验证我们的理论结论,并展示了算法的稳定性、高效性和高精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Richardson Extrapolation of the Crank-Nicolson Scheme for Backward Stochastic Differential Equations
In this work, we consider Richardson extrapolation of the Crank-Nicolson (CN) scheme for backward stochastic differential equations (BSDEs). First, applying the Adomian decomposition to the nonlinear generator of BSDEs, we introduce a new system of BSDEs. Then we theoretically prove that the solution of the CN scheme for BSDEs admits an asymptotic expansion with its coefficients the solutions of the new system of BSDEs. Based on the expansion, we propose Richardson extrapolation algorithms for solving BSDEs. Finally, some numerical tests are carried out to verify our theoretical conclusions and to show the stability, efficiency and high accuracy of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信